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Gut‑derived butyrate suppresses 
ocular surface inflammation
Laura Schaefer1*, Humberto Hernandez2,3, Rosalind A. Coats2, Zhiyuan Yu2, 
Stephen C. Pflugfelder2, Robert A. Britton1 & Cintia S. de Paiva2*

Dry eye is a common ocular inflammatory disorder characterized by tear film instability and reduced 
tear production. There is increasing evidence that homeostasis of the ocular surface is impacted by the 
intestinal microbiome. We are interested in investigating the potential role of microbially produced 
small molecules in mediating the interaction between the intestinal microbiota and the ocular surface. 
One such molecule is butyrate, a short‑chain fatty acid (SCFA) produced by certain members of the 
gut microbiota through fermentation of dietary fiber. Here we show that SCFA transporter SLC5A8 
is expressed in vivo in murine conjunctival and corneal epithelium. Pre‑treatment of in vitro corneal 
epithelial cultures or bone marrow‑derived dendritic cells (BMDCs) with phenylbutyrate (PBA) reduces 
lipopolysaccharide‑induced pro‑inflammatory Tnf expression. Corneal epithelial cultures and BMDCs 
isolated from Slc5a8 knockout mice are unable to respond to PBA pre‑treatment, suggesting that 
SLC5A8 is required for the protective effect of PBA. The treatment of mice undergoing desiccating 
stress (DS) with oral tributyrin, a prodrug form of butyrate, reduces inflammation at the ocular 
surface in vivo, and this effect partially requires SLC5A8. Finally, expression analysis on conjunctival 
tissue isolated from mice subjected to DS with and without tributyrin treatment revealed that 
treatment downregulated genes involved in Type I interferon signaling. Together these data support 
our hypothesis that SCFAs produced in the gut participate in the maintenance of ocular surface 
homeostasis.

Abbreviations
APC  Antigen presenting cell
BMDC  Bone marrow-derived dendritic cells
DS  Desiccating stress
HDAC  Histone deacetylase
KO  Knock-out
LPS  Lipopolysaccharide
OGD  Oregon green dextran
MFI  Mean fluorescence intensity
NaB  Sodium butyrate
PBA  Phenylbutyrate
SCFA  Short-chain fatty acid
SS  Sjögren Syndrome
TB  Tributyrin
Treg  Regulatory T cell
WT  Wild-type

Dry eye is a chronic multifactorial condition in which the eyes do not produce enough tears or have a disruption 
in tear film stability. Major risk factors include aging, female gender, contact lens use, smoking, and low humidity 
 environments1. The unstable and hyperosmolar tear film in dry eye triggers a self-perpetuating inflammatory 
cascade involving innate and adaptive immune cells and causes eye irritation, hyperemia, eye fatigue, and blurred 
 vision2,3. Inflammation at the ocular surface results in goblet cell apoptosis in the conjunctival epithelium, corneal 
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epithelial barrier disruption, and lacrimal gland inflammation and  dysfunction2. In severe cases, this can cause 
sight threatening corneal epithelial disease and ulceration.

The commensal bacteria that inhabit the gastrointestinal tract have far-reaching effects on health and homeo-
stasis in the intestine and at distal body sites, including the brain, bone, and barrier organs like lung, kidney, 
and  eye4–10. One important function mediated by gut microbiota is the maintenance of immune homeostasis at 
mucosal barrier tissues throughout the body. The ocular surface represents one such barrier tissue; similar to the 
intestinal luminal barrier, the cornea is constantly exposed to foreign stimuli such as environmental stressors 
and microbial pathogens, and under healthy normal conditions maintains an equilibrium between immune 
tolerance and  immunity2. The gut microbiota influences inflammatory responses by modulating immune cell 
maturation and function, including promoting the production of regulatory T cells (Tregs) and tolerogenic den-
dritic  cells11–13. The lack of commensal bacteria in germ-free mice results in underdeveloped lymphoid tissue, 
deficient production of the secretory antibody IgA (SIgA) and antimicrobial peptides, and abnormal cytokine 
 production14–17. In fact, the presence of gut commensals has been shown to modulate SIgA levels in tears and in 
eye-associated lymphoid tissue, as germ-free and antibiotic-treated mice show a significant decrease in ocular 
SIgA and mice reconstituted with certain commensals show restoration of  SIgA18,19. Healthy normal gut micro-
biota is also protective against the development of inflammatory dry eye pathology in a murine desiccating stress 
 model20. This is supported by the observation that germ-free mice, which are raised in the absence of bacteria, 
spontaneously develop lacrimal keratoconjunctivitis; fecal microbiota transplant reverses the dry eye phenotype 
in germ-free  mice21. Likewise, ocular disease severity in CD25 knockout mice, which also spontaneously develop 
dry eye disease, is worsened by disruption of the microbiota, either with antibiotic treatment or by raising the 
mice in a germ-free environment, and is improved by subsequent fecal microbiota  transplant22.

One mechanism by which commensal bacteria may impact their host is through the secretion of factors 
that can interact with host cell signaling pathways or modulate host gene expression. Short-chain fatty acids 
(SCFAs), including butyrate, propionate, and acetate, are metabolites that are produced in the gut by the com-
mensal microbiota from the fermentation of dietary fiber. SCFAs have been shown to exert anti-inflammatory 
effects that extend beyond the colon into other systems, including impacts on both adaptive and innate immune 
cells, bone homeostasis, the brain, and the  eye23–29. Clear links between SCFAs in the gut and ocular health have 
been demonstrated in models for  uveitis26,27. In addition to exerting effects indirectly through the adaptive and 
innate immune systems, butyrate may also act directly on ocular tissue. Direct application of butyrate to the eye 
has been demonstrated to improve wound healing and corneal opacification of alkali burns through inhibition 
of the NLRP3  inflammasome30. However, the effects of butyrate during desiccating stress has not been fully 
investigated. In this study, we examined the potential role of butyrate in mediating the interaction between the 
gut microbiota and the ocular surface.

Materials and methods
Animals. Female wild-type mice (C57BL/6  J strain) were purchased at 6 to 8 weeks of age from Jackson 
Laboratory (Bar Harbor, ME, USA). Slc5a8 knockout mice were a gift from Dr. Vadivel Ganapathy (Texas Tech 
University, Lubbock, Texas) and were originally derived by Dr. Thomas Boettger (Max Planck Institute, Ger-
many)31. Animal studies were approved by the Institutional Animal Care and Use Committee at the Baylor Col-
lege of Medicine and adhered to the Association for Research in Vision and Ophthalmology Statement for Use 
of Animals in Ophthalmic and Visual Research. A total of one hundred female wild-type mice and fifty female 
Slc5a8 knockout mice were used in the course of the study. The number of mice per experiment is given in the 
sections below and also in figure legends. At the time of sacrifice, mice were 8 to 12 weeks old. All studies are 
reported in accordance with the ARRIVE  guidelines32.

Digital PCR. Murine corneal epithelium and conjunctival tissue were collected from wild-type C57BL/6 J 
mice according to previously published  methods20. In brief, total RNA was extracted with Qiagen RNeasy Plus 
Micro RNA isolation kit (Qiagen, Germantown, MD, USA) following the manufacturer’s protocol. One sample 
equaled the tissue pooled from both eyes of each animal. cDNA was synthesized using Ready-To-Go First-
Strand beads (GE Healthcare Life Sciences, Marlborough, MA, USA) and random hexamers (Life Technologies, 
Grand Island, New York, USA) with 1 µg total RNA as template. DNA concentration was measured with a Qubit 
spectrophotometer (Life Technologies). Digital polymerase chain reaction (PCR) was performed as previously 
described with a QuantStudio 3D Digital PCR system (Life Technologies) with Slc5a8 Taqman assay primer 
set Mm00520629_m1 (Applied Biosystems, Inc. [ABI], Foster City, CA) and normalized by concentration of 
 cDNA33.

Histology and Immunostaining. For evaluation of morphology, eyes and ocular adnexa were excised, 
embedded in paraffin wax, and cut into 8-μm sections. Sections were stained with hematoxylin and eosin 
(H&E). For expression analysis, eyes and ocular adnexa were excised, embedded in Tissue-Tek Optimal Cutting 
Temperature medium (OCT; Sakura Finetek, Torrance, CA, USA) blocks and flash-frozen in liquid nitrogen, 
then cut into 6-μm sections using an HM 500 cryostat (Waldorf, Germany). Tissue sections of at least 3 different 
animals were fixed in 4% paraformaldehyde, and protein expression was visualized with chromogenic staining 
with a rabbit polyclonal antibody to SLC5A8 (Proteintech #21,433–1-AP, Rosemont, IL, USA) according to 
previously published  methods34. Separate sections were incubated with rabbit IgG (Sigma-Aldrich, St. Louis, 
MO, USA) as a negative control for primary antibody specificity. Antibodies were diluted according to manu-
facturer recommendations in 5% goat serum (Sigma-Aldrich) in phosphate-buffered saline (PBS). Sections were 
prepared for immunohistochemistry using an avidin/biotin blocking kit (Vector Laboratories, Burlingame, CA, 
USA) after quenching endogenous peroxidases with 0.3% hydrogen peroxide and washing with PBS. Sections 
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were blocked for 1 h with 20% goat serum in PBS and subsequently incubated with diluted primary antibody 
for 1 h. Pictures were taken at 60X magnification for H&E-stained sections and 40X magnification for immu-
nostained sections with an E400 microscope equipped with a digital camera (DS-Qi1Mc; Nikon Instruments 
Inc, Melville, NY, USA).

Cornea tissue explant cultures. Murine corneas were excised under a surgical microscope using curved 
Castroviejo scissors into a supplemented hormonal epidermal medium (SHEM) on ice containing 5  µg/ml 
dispase (Sigma-Aldrich). SHEM media was prepared as a 1:1 media mixture of Dulbecco’s Modified Eagle’s 
Medium with high glucose (Sigma-Aldrich) and Ham’s F-12 media (Sigma-Aldrich) containing 5 ng/ml EGF 
(Thermo Fisher Scientific, Waltham, MA, USA), 0.5 mg/ml hydrocortisone (Sigma-Aldrich), 30 ng/ml cholera 
toxin A (Sigma-Aldrich), 0.5% DMSO (Sigma-Aldrich), 50 mg/ml gentamicin (Hyclone, GE Healthcare Life 
Sciences, Marlborough, MA, USA), 1.25 mg/ml amphotericin B (Gibco BRL Products, Grand Island, NY, USA), 
1X ITS liquid media supplement (Sigma-Aldrich) and 5% FBS (Hyclone). The corneas were cut into four equal 
pieces, incubated at 37 °C for 15 min, and transferred with sterile forceps into SHEM media without dispase. 
After approximately 10 min, the pieces were transferred into wells of a 48-well culture plate with their epithe-
lium side up, allowed to adhere for several minutes, then covered with 200 µl SHEM media and incubated at 
37C in 5%  CO2. 200 µl fresh SHEM media was added every 3 days. On day 13, the media was replaced with 
300 µl SHEM media lacking FBS. On day 14, half the wells were treated with 5 µl 5 mg/ml phenylbutyrate (PBA; 
Sigma-Aldrich) prepared in 1:1 Dulbecco’s Modified Eagle’s Medium with high glucose (Sigma-Aldrich) and 
Ham’s F-12 media (Sigma-Aldrich) for a final concentration of 0.5 mM. The other wells were treated with 1:1 
media without PBA. After 2 h, a subset of wells was treated with 0.3 µg lipopolysaccharide (LPS; Sigma-Aldrich) 
in 1:1 media, and the plate incubated for 4 h at 37C in 5%  CO2 before adherent cells were collected for RNA 
isolation. Three separate experiments were performed using two to four each wild-type and Slc5a8 knockout 
mice. In an initial pilot experiment, we tested 0.5 mM, 1 mM and 5 mM PBA on corneal cultures in order to 
identify an effective dose. There was no difference observed in the ability of these three concentrations to reduce 
the inflammation response. Based on this, we chose to use the lowest (0.5 mM) concentration in subsequent 
in vitro experiments.

Bone marrow‑derived dendritic cell (BMDC) cultures. Bone marrow cells were obtained by flushing 
cells from femurs of female C57BL/6 J or Slc5a8 knockout mice with complete RPMI 1640 media (Gibco BRL) 
containing 10% FBS, 50 μg/ml gentamicin, and 1.25 μg/ml amphotericin B. Cells were filtered through a Sysmex 
CellTrics cell strainer (Sysmex, Lincolnshire, IL, USA). Marrow cells were cultured for 6 days at  107 cells per well 
in 10-cm-diameter plates in complete RPMI 1640 medium supplemented with mouse granulocyte–macrophage 
colony-stimulating factor (GM-CSF; 20 ng/ml) and IL-4 (5 ng/ml; PeproTech, Rocky Hill, NJ, USA). On day 3, a 
fresh medium containing GM-CSF and IL-4 was added. On day 6, cells were collected from the plates and seeded 
into a 24-well plate with  106 cells/well in 1 ml complete RPMI containing GM-CSF and IL-4. At this time a subset 
of wells received 18 µl 5 mg/ml PBA for a final concentration of 0.5 mM. On day 8, appropriate wells were treated 
with 1 µg/ml LPS for 4 h. Cells were harvested, centrifuged, and resuspended in Qiagen RLT buffer (Qiagen, 
Germantown, MD, USA) containing beta-mercaptoethanol (Sigma-Aldrich) buffer for RNA isolation. Two wells 
were combined for each sample. Each experiment used two to three each wild-type and Slc5a8 knockout mice. 
Three separate experiments were performed.

RNA Isolation and Real‑Time Quantitative PCR. Cultured corneal epithelium cells and BMDCs were 
eluted in Qiagen RLT buffer containing beta-mercaptoethanol (Sigma-Aldrich) using 350 µl per well, and RNA 
was extracted using Qiagen RNeasy Plus (Qiagen, Germantown, MD, USA) according to the manufacturer pro-
tocol. The concentration of isolated RNA was measured using a Nanodrop 2000 spectrophotometer (Thermo 
Fisher Scientific). After RNA isolation, cDNA was synthesized using Ready-To-Go You-Prime First-Strand 
beads (GE Healthcare Life Sciences, Marlborough, MA, USA).

Conjunctival tissue collected from female C57BL/6 J mice was placed in Qiagen RLT buffer with beta-mer-
captoethanol and flash-frozen in liquid nitrogen. For RNA isolation, tissue was chopped with surgical scissors 
then sonicated, and RNA was extracted using Qiagen RNeasy Plus.

Real-time PCR was performed by using specific TaqMan assays (TNF-α: ABI assay ID Mm00443260_g1; 
HPRT: Assay ID Mm00446968_m1; Slc5a8: Mm07300153_m1) with TaqMan CR Universal PCR Master Mix 
with AmpErase UNG; (Applied Biosystems), in a QuantStudio 3 real-time PCR system (ABI) according to the 
manufacturer’s recommendations. The results of quantitative PCR were analyzed by the comparative threshold 
cycle  (CT) method and normalized by the  CT of HPRT. The relative mRNA level in the LPS-only treated group 
was used as the calibrator for each experiment. The data encompass the results of three separate experiments.

Desiccating stress and tributyrin treatment. Mice were exposed to desiccating stress (DS) conditions 
a drafty low humidity (< 30% relative humidity) environment according to the standard desiccating stress meth-
ods previously  described20, which included QID pharmacological inhibition of tear secretion by subcutaneous 
injection of scopolamine hydrobromide (0.5 mg/ 0.2 mL; Sigma-Aldrich, St. Louis, MO, USA). Mice were eutha-
nized after 5 continuous days of DS.

Mice received daily gavage of 100 μl of 0.5 mM of tributyrin (W222305, Sigma-Aldrich) or of PBS (Corning, 
Manassas, VA, USA) once daily while subjected to desiccating stress. This dose was chosen after a pilot study that 
evaluated the effects on the corneal barrier after oral gavage of different concentrations of tributyrin (0.1 mM, 
0.5 mM, 1 mM, and 5 mM in non-stressed mice, 0.5 mM and 5 mM in DS mice). In non-stressed mice, all doses 
were not significantly different from untreated controls, indicating there was no toxicity or deleterious effect to 
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the ocular surface. In DS mice, since the lower dose was efficacious, we performed subsequent experiments with 
0.5 mM tributyrin (data not shown).

Measurement of corneal barrier function. Corneal barrier function was assessed by quantifying cor-
neal epithelial permeability to 70-kDa Oregon Green Dextran-488 (OGD; Invitrogen, Carlsbad, CA) according 
to our previously published  protocol22. Each image was quantified by two blinded observers. The mean intensity 
of the right and left eyes was averaged. Initial experiments with wild-type mice utilized nine to fifteen (18–30 
eyes) mice per experimental group. Subsequent experiments with both wild-type and Slc5a8 knockout mice 
used eight to ten mice (16–20 eyes) per experimental group. 

Measurement of goblet cell density. Eyes and ocular adnexa were excised, fixed in 10% formalin, 
embedded in paraffin, and cut into 5-μm sections using a microtome (Microm HM 340E, Thermo Fisher Sci-
entific). Sections were stained with Periodic Acid Schiff (PAS) reagent to visualize the mucin-containing goblet 
cells. The goblet cell density was measured in the superior and inferior conjunctiva using NIS-Elements software 
and expressed as the number of positive cells per  millimeter22. Five to nine eyes per each group were examined. 
Each image was quantified by two blinded observers.

Statistical analysis. Statistical analysis was performed with GraphPad Prism 9.0 software (GraphPad Soft-
ware Inc., San Diego, CA, USA). Pairwise comparisons were made with non-parametric Mann- Whitney U tests 
with p-value ≤ 0.05 considered significant. In experiments with more than one experimental variable, statistical 
comparisons were made with two-way ANOVA using Tukey’s multiple comparisons test. P value greater than 
0.05 was considered non-significant.

NanoString analysis. NanoString analysis was performed using conjunctival RNA from female C57BL/6 J 
mice subjected to 5 days in one of three experimental conditions: unstressed with daily gavage of PBS, DS with 
daily gavage of PBS, or DS with daily gavage of tributyrin (n = 4 mice per group). Two hundred fifty-four target 
transcripts were quantified with the NanoString nCounter multiplexed platform using the Mouse Inflammation 
V2 panel (www. nanos tring. com). nCounts of mRNA transcripts were normalized using the geometric means 
of 6 reference genes (Cltc, Gapdh, Gusb, Hprt, Pgk1, Tubb5). Data was analyzed by ROSALIND® (https:// rosal 
ind. onramp. bio/), with a HyperScale architecture developed by ROSALIND, Inc. (San Diego, CA) as described 
 previously35. Heatmaps were constructed using GraphPad Prism 9.0 software (GraphPad Software Inc., San 
Diego, CA, USA).

Results
C57BL/6 J mice express the SCFA transporter SLC5A8 on the ocular surface. Originally identi-
fied in renal tissue, the monocarboxylate transporter SLC5A8 is widely expressed in many tissues and has been 
studied extensively in the intestine where its protein is located in the apical lumen-facing membrane in direct 
contact with SCFAs produced by the intestinal  microbiota36. We examined whether SCFAs could act directly 
on ocular surface tissue by testing for expression of transporter mRNA in corneal epithelium and conjunctival 
tissue in the mouse using quantitative digital PCR. Slc5a8 transcripts were detected in both corneal epithelium 
and conjunctiva (Fig. 1A). We next looked for expression of the transporter protein in corneal and conjunctival 
epithelium. Tissue sections encompassing the eye and ocular adnexa, including conjunctival tissue, were stained 
with H&E to assess the overall morphology of cornea and conjunctiva in Slc5a8 KO mice as compared to wild-
type (Fig. 1B). The structure and integrity of the corneal epithelium in Slc5a8 KO mice matched that of wild-type 
mice. To examine protein expression of Slc5a8, separate tissue sections were immunostained and chromogenic 
detection for SLC5A8 was performed (Fig. 1C). Robust protein expression was detected for the SLC5A8 trans-
porter throughout the corneal epithelial surface and conjunctival epithelium surrounding the goblet cells, with 
highest expression in the corneal epithelium. As expected, no SLC5A8 immunoreactivity was observed in the 
same tissue from knockout mice lacking the SLC5A8 protein. The presence of SLC5A8 suggests that SCFAs, in 
particular butyrate, may interact directly with ocular barrier tissues.

Butyrate suppresses LPS‑induced inflammation in vitro in corneal epithelium and dendritic 
cells. Butyrate has been demonstrated to counteract inflammatory stimuli in colonic epithelial  cells37–41. We 
investigated the potential for butyrate to similarly blunt inflammation at the ocular surface in corneal epithe-
lium. Lipopolysaccharide (LPS) has been shown previously to induce pro-inflammatory cytokine expression 
at the ocular surface in vivo when topically applied to mouse corneas and in vitro when added to corneal and 
conjunctival epithelial  cultures4,34. We cultured murine corneal explants in vitro and pre-incubated them with 
phenylbutyric acid (PBA) before exposure to LPS. PBA is an aromatic short-chain fatty acid which is a chemical 
derivative of butyric acid, and like butyrate, it also has HDAC activity. PBA is FDA-approved for use in humans 
and is, therefore, an attractive candidate for possible treatment of ocular surface inflammation. As expected, 
induction of the inflammatory cytokine Tnf was observed in the corneal epithelial cultures after exposure to 
LPS. Pretreatment of cultures with PBA significantly reduced the induction of Tnf mRNA expression (Fig. 2A). 
No statistical difference was seen in the reduction of the inflammatory response between corneal cells pretreated 
with either 0.5 mM, 1 mM, or 5 mM PBA (data not shown). Treatment of cultures with PBA without LPS stimu-
lation did not change Tnf expression from that of untreated control cultures.

Activated dendritic cells also play an important role in the inflammatory response at the ocular  surface2. We 
examined the effects of butyrate treatment on the inflammatory response of bone-marrow-derived dendritic cells 

http://www.nanostring.com
https://rosalind.onramp.bio/
https://rosalind.onramp.bio/
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(BMDCs) that had been exposed to LPS. Similar to corneal epithelial cells, BMDCs responded to pretreatment 
with 0.5 mM PBA with a twofold reduction in the expression of Tnf after LPS exposure (Fig. 2B).

Slc5a8 is required for the protective effect of butyrate in cornea and dendritic cells in vitro. The 
SCFA transporter Slc5a8 is critical for the anti-inflammatory effects of butyrate in the colon and for intestinal 
mucosal immune tolerance mediated by dendritic cells exposed to  butyrate40,42. We investigated whether Slc5a8 
was required for the protective effect of PBA in corneal epithelium and BMDCs. Corneal explants and BMDCs 
from Slc5a8 knockout mice were cultured and exposed to LPS in the presence or absence of PBA. In both cell 
types, PBA pretreatment was unable to reduce Tnf mRNA expression in the absence of Slc5a8 (Fig. 2A and B). 
This suggests that the transporter is required for butyrate to exert its protective effects against inflammatory 
stimuli.

Administration of tributyrin (TB) to mice undergoing desiccating stress protects against cor-
neal barrier disruption and loss of conjunctival goblet cells.. We investigated whether butyrate 
could exert anti-inflammatory effects at the ocular surface in  vivo via administration through the gut using 
tributyrin. Tributyrin is a stable and rapidly absorbed prodrug form of butyric acid found naturally in butter; 
upon oral ingestion, tributyrin is hydrolyzed by pancreatic and gastric lipases into glycerol and three butyrate 

Figure 1.  C57BL/6 J mice express mRNA and protein for the SCFA transporter SLC5A8 on the ocular surface. 
(A) Quantitative digital PCR was used for amplification of cDNA prepared from wild-type C57BL/6 murine 
corneal epithelium and conjunctival tissue. Each datapoint represents tissue from one animal. The number of 
transcripts detected was normalized to the concentration of DNA. (B) Cornea and conjunctival (Conj) sections 
from wild-type (WT) C57BL/6 and Slc5a8 knockout (KO) mice were stained with H&E to assess morphology. 
Representative images are shown. (C) Cornea and conjunctival (Conj) sections from wild-type (WT) C57BL/6 
and Slc5a8 knockout mice were immunostained with anti-mouse SLC5A8 antibody using chromogenic 
detection (reddish-brown). Nuclei were stained with hematoxylin (purple). Slides stained with anti-rabbit IgG 
are shown as a negative control. Representative images are shown. CO = cornea; CJ = conjunctiva.
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 molecules43,44. Tributyrin has “generally recognized as safe” (GRAS) classification from the Food and Drug 
Administration (FDA: 21CFR184.1903) and is used as a food additive by many industries; as such it is a poten-
tial candidate for treatment of ocular surface inflammation. In the desiccating stress (DS) model for dry eye, 
mice are subjected to a low humidity environment and cholinergic blockade which results in compromised 
corneal barrier function, reduced goblet cell numbers in the conjunctiva, and upregulation of innate inflamma-
tory  pathways45–47. Because dry eye is more frequent in  women48,49, and male mice are resistant to corneal barrier 
disruption (a hallmark of dry eye)21,50, only female mice were used. Female C57BL/6 J mice were subjected to 
desiccating stress for five days with concurrent daily gavage of either tributyrin or vehicle. After five days of DS, 
mice were sacrificed and assessed for corneal barrier disruption and goblet cell loss. Corneal permeability was 
examined using Oregon-Green-Dextran dye (OGD) applied to the corneal surface. Corneas from mice gavaged 
with 0.5 mM tributyrin during desiccating stress exhibited significantly less permeability to OGD compared to 
corneas from mice gavaged with vehicle control. This was quantified by measuring the mean fluorescence inten-
sity within a 2 mm circle placed on a digital image of the cornea (Fig. 3A and B).

Another consequence of DS in the murine eye is the loss of goblet cells within the conjunctival epithelium, 
which normally secrete mucins that form the inner layer of the tear film. After desiccating stress for 5 days, mice 
orally treated with tributyrin maintained larger densities of goblet cells in the conjunctiva compared to mice 
treated with vehicle, and goblet cell size appeared larger and more regular (Fig. 3C and D). This suggests that 
butyrate metabolized in the gut can exert protective effects at the ocular surface in vivo.

We next investigated whether the SLC5A8 transporter is required for the protective effect of butyrate in vivo 
by administering tributyrin to Slc5a8 knockout mice concurrently alongside wild-type mice in the desiccating 
stress environment. Unlike the wild-type cohort, Slc5a8 knockout mice receiving tributyrin did not show statis-
tically significant improvement in corneal barrier integrity compared to mice receiving vehicle control (Fig. 3E 
and F), supporting the in vitro results. However, while not statistically significant, the average OGD intensity for 
tributyrin-treated knockout mice was lower than for vehicle-treated mice, indicating that in vivo butyrate may 
exert its protective effects only partially through the SLC5A8 transporter.

In intestinal epithelial cells, expression of the Slc5a8 gene has been shown to be upregulated by probiotic 
Lactobacillus plantarum51 and downregulated during inflammation and colon  cancer36. Germ-free mice have 
significantly lower Slc5a8 expression levels in the intestine that are restored by recolonization with bacteria, 
suggesting that commensal bacteria stimulates  expression52. To determine if expression of Slc5a8 changes in the 
corneal epithelium during DS or after tributyrin treatment, we performed qPCR on corneal epithelium isolated 
from mice. No significant difference was observed either in response to DS or in response to tributyrin treatment 
under DS conditions (data not shown).

Oral tributyrin decreases type I interferon signaling pathway genes in the conjunctiva. To 
gain insight into the mechanism for butyrate’s protective effects on the ocular surface, we performed gene 
expression analysis using NanoString on conjunctival tissue isolated from mice subjected to DS with or without 
tributyrin treatment (n = 4 mice per group). The NanoString Inflammatory panel allows for interrogation of 248 

Figure 2.  Phenylbutyrate (PBA) treatment of corneal epithelial cells and bone-marrow-derived dendritic cells 
inhibits LPS-induced inflammation in vitro and the butyrate transporter SLC5A8 is required for this effect. (A) 
Corneal epithelial cells and (B) bone marrow dendritic cells (BMDC) were cultured from wild-type (WT) and 
Slc5a8 knockout (KO) mice, pretreated with either phenylbutyrate (PBA) or media control for 1 h, then left 
untreated (Untrt) or challenged with LPS. Each data point is a well with 1 tissue explant, and each condition was 
in duplicate or triplicate wells within each experiment. Shown is the combined qPCR data from the experiments 
after each dataset was normalized to the LPS-only treated condition. Mean ± standard deviation of three 
independent experiments; each experiment used 2–3 wells per condition. Statistical comparisons were made 
with two-way ANOVA using Tukey’s multiple comparisons test. P value greater than 0.05 was considered non-
significant (ns). *P ≤ 0.5, **P ≤ 0.01, ***P ≤ 0.001, ****P ≤ 0.0001.
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genes involved in the inflammatory response and related pathways (www. nanos tring. com). Eight genes were sig-
nificantly changed, all of which were downregulated by tributyrin treatment (Ifi44, Ifit1, Ifit3, Stat2, Oas2, Oas1a, 
Stat1, Stat2; log2 fold change > 1.2, p-adj < 0.05, Fig. 4). All of these genes are involved in Type I interferon (IFN) 
 signaling53,54. Type I IFNs have several functions, including activating intracellular antimicrobial responses and 
modulation of innate and adaptive immune  responses53. Butyrate has been shown in other studies to modulate 
genes involved in Type I IFN  signaling55,56.

Discussion
The gut microbiota plays many important roles in host health, including in host nutrition, physiology, metabo-
lism, and pathogen resistance. One important function of the commensal gut bacteria is its ability to modulate 
inflammatory responses. Several studies have shown that a healthy gut microbiota promotes ocular homeostasis 
and disease resistance. Germ-free mice are more susceptible to ocular Pseudomonas aeruginosa infection due 
to deficiency of a normal ocular surface immune response, which can be reversed by recolonizing the gut with 
 bacteria19. Our group has shown that the presence of an intact health microbiota protects against keratoconjunc-
tivitis sicca in several different dry eye disease  models20–22. Conversely, it has been shown that a cross-reactive 
antigen from a gut commensal primes autoreactive retina-specific T-cells and triggers disease in a murine auto-
immune uveitis  model5. Our study adds to a growing body of knowledge regarding ocular inflammation and 
the relationship between the eye and the gut microbiota.

In this study, we show that the SCFA transporter Slc5a8 is expressed at the ocular surface in conjunctival 
and corneal epithelium both at mRNA and protein level. This suggests that circulating butyrate may directly 

Figure 3.  Administration of tributyrin (TB) to mice undergoing desiccating stress protects against corneal 
barrier disruption and loss of conjunctival goblet cells. (A) Representative images of corneal permeability to 
Oregon-green-dextran (OGD) of four different animals from each treatment group. (B) Corneal epithelium 
permeability to OGD was quantified by measuring the mean fluorescence intensity. Each data point represents 
the average value from both eyes of one animal, n = 8–15 animals. (C) Representative images of conjunctival 
cryosections with PAS-stained goblet cells (purple-magenta) from TB and vehicle control-treated (PBS) mice. 
Area demarcated by the square is high magnification of the area underneath. (D) Accumulative data for 
conjunctival goblet cell number per mm, n = 8–9. (E) Representative images of corneal permeability to Oregon-
green-dextran (OGD) of animals from each treatment group. (F) Corneal epithelium permeability to OGD for 
wild-type (WT) and Slc5a8 knockout (KO) mice gavaged with either vehicle control or tributyrin. Statistical 
comparisons were made using two-way ANOVA using Tukey’s multiple comparisons test. P value greater than 
0.05 was considered non-significant (ns).

http://www.nanostring.com
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interact with the ocular surface. The precise mechanisms behind the interaction between the gut and the ocular 
surface are not yet clear; the bacteria-produced small metabolite butyrate is one potential mediator as it has been 
shown to modulate inflammatory responses both in the gut and elsewhere in the  body12,23–29. SCFAs acetate, 
propionate, and butyrate are produced by bacteria through fermentation of non-digestible dietary fiber in the 
large intestine, and the colonic epithelium expresses several proteins that either bind these molecules as part of 
signaling cascades or transport them across the cellular membrane. Butyrate in the gut has been shown to enter 
the bloodstream; elevated butyrate levels in serum can be measured after oral administration of butyrate and 
 tributyrin43,44,57–59. We hypothesize that butyrate originating in the gut could be transported to the ocular surface 
via the vascular system and directly interact with cells at the ocular surface.

We show that tributyrin treatment helps to restore corneal barrier integrity and goblet cell loss that occurs 
under DS conditions. It has been previously observed that germ-free mice, which are devoid of microbes includ-
ing commensals that produce SCFAs in the gut, have lower goblet cell density not only in the gut but also in the 
 eye60,61. It is known that in the intestinal epithelium butyrate helps to maintain the intestinal barrier by modulat-
ing goblet cell expression of mucins and goblet cell  differentiation62,63. It is possible that butyrate produced in the 
gut also has a direct effect on the differentiation or maintenance of conjunctival goblet cells.

Butyrate also functions as a ligand for a subset of G protein-coupled receptors that bind SCFAs, including 
FFAR2 and HCAR2, which are expressed in epithelial barrier surfaces including the gut. There is a large body 
of work on the function of these receptors in the colonic epithelium and immune  cells28,64,65. In the eye, HCAR2 
signaling is essential for the ability of hydroxybutyric acid to inhibit the expression of pro-inflammatory markers 
in the retinal  epithelium66. Our in vivo results with tributyrin-fed Slc5a8 knockout mice indicate that SLC5A8 
may be only partially required for tributyrin’s protective effect on corneal barrier function. It will be important 
to address the potential role of butyrate signaling via HCAR2 and FFAR2 in future studies.

We also show that the direct application of phenylbutyric acid (PBA) can reduce the inflammatory response 
in corneal epithelial cells. Corneal cultures pretreated with PBA expressed lower levels of inflammatory cytokines 
when exposed to LPS, supporting the hypothesis that butyrate can directly reduce inflammation at the ocular 
surface. Interestingly, PBA’s effect is lost in the absence of SCFA transporter SLC5A8, suggesting that butyrate 

Figure 4.  Heatmaps showing that oral tributyrin treatment (Tb) reduces expression of Type I interferon (IFN) 
signaling genes in conjunctiva. Expression analysis using the NanoString Mouse Inflammation panel v2 was 
performed on conjunctival tissue from mice subjected to DS with vehicle (Veh) or with tributyrin treatment. For 
all genes identified as significantly changed, log2 > 1.2 and p adj. < 0.05.
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is transported into the cell. Butyrate can directly modulate gene expression in the cell by inhibiting histone 
deacetylases (HDACs)12,67–69. It is possible that butyrate modulates the expression of inflammatory markers 
in corneal epithelial cells by HDAC inhibition. In support of this, in vitro studies with a corneal epithelial cell 
line showed that activation of toll-like receptor 3 causes barrier disruption by increasing HDAC1 which in turn 
represses the transcription of E-cadherin; this barrier disruption can be blocked with  butyrate70. It would be very 
interesting to test SCFAs propionate and acetate in future studies with our model, particularly since propionate, 
but not acetate, also has HDAC inhibitory properties and can be transported into the cell by  SLC5A871. We will 
investigate the potential role of butyrate’s HDAC inhibitory activity in suppressing the inflammatory response 
in corneal epithelium in future studies.

Our results indicate that both epithelial cells and antigen presenting cells responded to butyrate by decreasing 
inflammatory Tnf mRNA. We have previously shown that both corneal epithelium and BMDCs respond to LPS 
by secreting inflammatory  cytokines34. Our study adds to the literature showing another bacteria by-product 
has an anti-inflammatory effect on the ocular surface and antigen-presenting cells (APCs). It is unknown at the 
moment if this effect happens simultaneously or if the effect on epithelial cells follows the effect on APCs. Further 
testing will be needed to dissect this question.

We and others have previously shown that Treg cells are protective at the ocular  surface22,46 and that desic-
cating stress and age-related ocular surface disease induce dysfunctional regulatory T  cells72,73. Butyrate pro-
duced in the gut has also been shown to impact inflammation indirectly at distal sites by increasing the levels 
of peripheral anti-inflammatory  Tregs11,23,24,27. The addition of butyrate to naive  CD4+ T cells cultured in Treg 
cell-polarizing conditions results in increased histone acetylation at the Foxp3 promoter, implicating the HDAC 
inhibitory activity of butyrate as a mechanism for increased Foxp3 expression and thus Treg  differentiation11. In 
fact, it has been shown that spleen-derived dendritic cells treated with butyrate induce differentiation of naïve 
T cells into  FoxP3+ Treg cells and suppress differentiation into pro-inflammatory interferon-γ + T cells, and the 
SLC5A8 transporter is  required42. Oral administration of sodium butyrate (NaB) in the experimental autoim-
mune uveitis (EAU) mouse model increased the ratio of anti-inflammatory Treg cells to Th17 cells, resulting 
in less  disease27. Interestingly, another study using the EAU model showed that propionate, another SCFA with 
HDAC inhibitory activity, can also induce Tregs and suppress T effector cell induction, resulting in less  disease26. 
It is possible that facilitation of Treg differentiation over pro-inflammatory T-cells by butyrate may also play a 
role in butyrate’s protective effect at the ocular surface. Based on all these previous findings, we would predict 
that mice treated with tributyrin have increased numbers of  FoxP3+ Tregs at the ocular surface and will further 
investigate this in follow-up studies.

Finally, we show that in the conjunctiva of mice subjected to desiccating stress, there is upregulation of genes 
involved in Type I IFN signaling, and tributyrin treatment reduces expression of these genes. This result agrees 
with our previously published NanoString results comparing gene expression in human conjunctival cells from 
Sjögren Syndrome (SS) patients with dry eye and healthy control subjects, where we observed upregulation of 
Type 1 IFN signaling in  SS35. SS is an autoimmune inflammatory disorder characterized by secretory dysfunction 
in the eye and mouth; in the eye, this results in tear film instability, reduced tear production, and corneal barrier 
disruption. Increased expression of type I IFNs genes has been shown in autoimmune disorders including SS, 
and type I IFNs have been implicated in lacrimal gland and salivary gland pathology in human SS and in mouse 
models of  SS74–76. In addition, tears isolated from mice undergoing DS have elevated IFN-α77. There is evidence 
in the literature that microbial products including butyrate can modulate Type I IFN  signaling55,56. Butyrate 
may be acting directly at the ocular surface to downregulate inflammatory Type I IFN signaling, possibly via its 
HDAC inhibitory activity to modulate Type I IFN gene expression.

Our data show that butyrate originating in the gut can modulate inflammatory responses at the ocular surface. 
We propose two possible mechanisms for butyrate’s action on the ocular surface, an indirect mechanism via 
modulation of immune cells and a direct mechanism in which butyrate interacts directly with the ocular surface, 
based on our findings and on other data in the literature (Fig. 5). As discussed, there is considerable support in 
the literature for both scenarios. In this study, expression of SCFA receptors and the SCFA transporter SLC5A8 
at the ocular surface suggest that circulating butyrate can interact directly with ocular surface epithelium. In 
support of this, butyrate suppressed pro-inflammatory gene expression in corneal explants in vitro and required 
the SLC5A8 transporter for this effect. Finally, butyrate delivered intragastrically ameliorates ocular surface 
disease in a dry eye disease mouse model. Together these findings contribute to a growing body of knowledge 
on the links between the gut microbiota and the health of the eye.
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Data availability
The NanoString data for this study can be found in the GEO repository (Submission ID GSE195578, https:// 
www. ncbi. nlm. nih. gov/ geo/).
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