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ABSTRACT
Cancer is a long-term illness that involves an imbalance in cellular and immune functions. It can be 
caused by a range of factors, including exposure to environmental carcinogens, poor diet, infec-
tions, and genetic alterations. Maintaining a healthy gut microbiome is crucial for overall health, 
and short-chain fatty acids (SCFAs) produced by gut microbiota play a vital role in this process. 
Recent research has established that alterations in the gut microbiome led to decreased produc-
tion of SCFA’s in lumen of the colon, which associated with changes in the intestinal epithelial 
barrier function, and immunity, are closely linked to colorectal cancer (CRC) development and its 
progression. SCFAs influence cancer progression by modifying epigenetic mechanisms such as 
DNA methylation, histone modifications, and non-coding RNA functions thereby affecting tumor 
initiation and metastasis. This suggests that restoring SCFA levels in colon through microbiota 
modulation could serve as an innovative strategy for CRC prevention and treatment. This review 
highlights the critical relationship between gut microbiota and CRC, emphasizing the potential of 
targeting SCFAs to enhance gut health and reduce CRC risk.
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1. Introduction

Colorectal cancer (CRC) poses a significant health 
challenge worldwide, with substantial economic 
impacts on healthcare systems, patients, and commu-
nities. These impacts encompass direct medical costs, 
productivity losses, and the intangible effects like 
stress, decreased quality of life.1 Enhancing early 
detection through improved screening programs, 
developing strategies to overcome treatment resis-
tance, managing side effects, and reducing disparities 
in care are critical. Advances in personalized medi-
cine, immunotherapy, and supportive care hold pro-
mise, but require continued research, investment, and 
commitment to make these therapies accessible. 
Currently available therapies are ineffective to cure 
CRC patients and often results in toxicities. 
Addressing the therapeutic challenges in CRC 
requires a multifaceted approach. By tackling these 

challenges, we can improve outcomes and quality of 
life for CRC patients. The gut microbiota, consisting 
of a wide variety of microorganisms that continuously 
evolve, plays a key role in sustaining health and 
affecting disease outcomes.2 Several studies have 
demonstrated that the gut microbiota can have 
a significant effect on the progression of various 
chronic conditions, including inflammatory bowel 
disease (IBD),3 diabetes,4 atherosclerosis,5 and 
CRC.6–8 The gut microbiome composition and its 
metabolic products, like Short-chain fatty acids 
(SCFAs), have emerged as significant contributors 
to CRC pathogenesis.9 SCFAs, one of the many meta-
bolites produced by the gut microbiota, are increas-
ingly recognized for their potential impact on CRC. 
Understanding the mechanisms by which gut micro-
biota affects these diseases opens new avenues for 
preventive and therapeutic interventions. At the 
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same time, modulating the gut microbiota through 
diet, probiotics, prebiotics, and advanced therapies 
such as fecal microbiota transplantation (FMT) 
holds promise for improving health outcomes and 
managing these complex diseases.10

SCFAs, including acetate (60%), propionate 
(20%), and butyrate (20%), are primarily produced 
by the gut microbiota through the fermentation 
of dietary fibers and other indigestible 
carbohydrates.11 The process involves complex 
microbial communities that utilize different meta-
bolic pathways to convert carbohydrates into 
SCFAs (Figure 1). Acetate can be produced via 
two distinct pathways. In first pathway, acetate 
production is produced via the acetyl-CoA path-
way, where acetyl-CoA is converted into acetate. 
Acetate is produced by a broad range of anaerobic 
bacteria, including members of the genera 
Bacteroides, Bifidobacterium, Clostridium, and 
Ruminococcus.12 Whereas, the Wood-Ljungdahl 
pathway, which acetogenic bacteria utilize to 

convert acetyl-CoA, is not responsible for convert-
ing acetyl-CoA into acetate. In this process, carbon 
dioxide is reduced to form carbon monoxide, 
which then combines with a coenzyme A and 
a methyl group to generate acetyl-CoA. This acetyl- 
CoA serves as the precursor in the formation of 
acetate.13 Propionate production occurs through 
three main pathways, succinate pathway, acrylate 
pathway, and propanediol pathway. Succinate 
pathway is commonly undertaken by Bacteroides, 
Prevotella, Alistipes, Ruminococcus, Dialister, and 
Akkermansia, which involves the conversion of 
succinate to propionate via methylmalonyl-CoA 
and propionyl-CoA intermediates. Acrylate path-
way is utilized by Clostridium, Megasphaera, and 
Coprococcus, which involves the conversion of lac-
tate to acrylate, which subsequently is converted to 
propionate. Propanediol pathway is utilized by 
Roseburia, Eubacterium, Blautia and 
Lachnospiraceae species, which involves the con-
version of deoxy sugars such as rhamnose and 

Figure 1. Pathways responsible for the biosynthesis of short-chain fatty acids (SCFAs) derived from indigestible dietary fiber and 
carbohydrate fermentation by gut microbiota. The primary SCFAs include acetate, generated through the wood–Ljungdahl pathway 
or from acetyl-CoA; butyrate, formed from two acetyl-CoA molecules; and propionate, produced from phosphoenolpyruvate via either 
the acrylate or succinate pathway or through propanediol pathway.
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fucose to propionate.14 Butyrate is primarily pro-
duced via the butyryl-CoA pathway. Major buty-
rate producers include species from the genera 
Clostridium, Faecalibacterium, Eubacterium, 
Roseburia, and Butyrivibrio. Butyrate is synthesized 
from two molecules of acetyl-CoA, forming 
butyryl-CoA as an intermediate, which is then con-
verted to butyrate.15 

The biosynthesis of SCFAs is a complex process 
involving multiple microbial pathways and is influ-
enced by various dietary and environmental 
factors.9 Understanding these pathways provides 
insight into how dietary interventions and probio-
tic therapies can modulate SCFA production, with 
potential implications on various disease states, 
including CRC. However, some potential research 
gaps are poorly understood which need to be 
explored was described in the Table 1. This review 
summarizes the latest evidence from recent studies 
on the relationship between SCFAs produced by 
gut microbiota and CRC.

2. Role of short chain fatty acids as a metabolite 
of probiotic bacteria

Probiotics play a significant role in maintaining 
and enhancing overall health by supporting diges-
tive function, boosting the immune system, and 
potentially benefiting mental and metabolic health. 
Probiotics engage directly with gut epithelium and 
immune cells, releasing active metabolites such as 
SCFAs that possess anti-inflammatory and cyto-
protective properties.16 These interactions can 
help to alleviate chronic, debilitating gastrointest-
inal (GI) disorders, which are characterized by 
symptoms such as inflammatory bowel disease 

and irritable bowel syndrome.17 Certain probiotic 
bacterial strains have been shown to potentially 
prevent or treat various diseases such as obesity/ 
type 2 diabetes,18 necrotizing enterocolitis,19 

inflammatory bowel disease, and autoimmunity in 
both rodent models and humans.20,21 However, the 
mechanisms behind these benefits are not fully 
understood. Despite this, there has been 
a significant increase in demand for probiotic sup-
plements over the last decade, leading to the rapid 
development of new probiotic products for the 
consumer market. Most of the health benefits of 
probiotics studies that have explored the link 
between probiotics and gut health, have focused 
on animal models or humans with preexisting 
health issues, leaving the effects of probiotics on 
healthy, disease-free individuals less explored. 
Hemarajata et al.,22 reported that probiotics posi-
tively modulate the gut microbiome. Yet the influ-
ence of probiotics on the gut microbiome and 
SCFA spectrum in healthy hosts has remained 
a controversial topic,23 because of individual varia-
tions, study design limitations, and mechanisms. 
SCFAs are known to influence immune and 
inflammatory progressions by inhibiting the 
nuclear factor kappa B (NF-κB) signaling pathway. 
Furthermore, SFCA-dependent NFkB inhibition 
also impacts cancer cells (where often NFkB signal-
ing is constitutive24 by inducing cell cycle arrest 
and cancer cell apoptosis.25 SCFAs also contribute 
to the maintenance of gut barrier integrity, with 
higher butyrate levels possibly enhancing tight 
junctions in the gut epithelium.26

Butyrate, produced through gut microbiota 
mediated fermentation of indigestible carbohy-
drates plays a crucial role in the health benefits of 

Table 1. Key gaps in understanding the relationship between short-chain fatty acids (SCFAs) and colorectal cancer (CRC).
S.No. Topic areas Research gap areas

1 Mechanistic pathways To investigate the specific mechanisms through which SCFAs influence CRC development. This could include their effects 
on inflammation, immune modulation, cell proliferation, and apoptosis.

2 Clinical implications To explore the clinical relevance of SCFAs in CRC prevention, progression, or treatment. This might involve studying their 
levels in CRC patients compared to healthy individuals or assessing their potential as biomarkers.

3 Microbiota composition To examine how variations in gut microbiota composition affect SCFAs production and subsequent CRC risk. This could 
involve studying different microbial communities in relation to SCFAs profiles and CRC outcomes.

4 Dietary interventions To investigate how dietary interventions aimed at modifying SCFAs production (e.g., through fiber supplementation or 
probiotics) impact CRC risk or progression.

5 Epigenetic 
modifications

To explore whether SCFAs influence CRC through epigenetic modifications, such as DNA methylation or histone 
acetylation, which regulate gene expression.

6 Interaction with host 
genetics

To study how host genetic factors interact with SCFAs in CRC susceptibility or response to treatment.

7 Microenvironment 
interactions

To investigate how SCFAs influence the tumor microenvironment in CRC, including interactions with immune cells, 
stromal cells, and angiogenesis.
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host.27 Notably, research has revealed sex-based 
differences in the gut microbiota responsible for 
butyrate production.28 A study found distinct 
SCFA profiles in male and female rats, when fed 
them with an oligofructose-rich diet.29 Female rats 
had increased abundance of Bacteroidetes and IL- 
10, whereas male rats had higher levels of fecal 
butyrate, liver IgA, IL-6, and cecal IL-6.29 In 
another study, native African populations had 
higher concentrations of butyrate-producing bac-
teria, including Faecalibacterium prausnitzii and 
Clostridium clusters IV and XIVa.30 In contrast, 
Bacteroides was more prevalent in African 
American individuals. The Bacteroides-Prevotella 
group was found to be more abundant in men 
compared to women.31 A few clinical investiga-
tions have explored the relationship between gut 
microbiota and functional gastrointestinal disor-
ders (FGIDs). For example, a study conducted 
with 277 Japanese participants examined gender 
differences in gut microbiota composition.32 The 
results revealed that men had higher abundance of 
Prevotella, Megamonas, Fusobacterium, and 
Megasphaera, while women had more abundance 
in Bifidobacterium, Ruminococcus, and 
Akkermansia. Among women, 19.4% reported 
hard stools (Bristol stool form types 1 and 2), 
a higher proportion than in men, while loose-to- 
liquid stools (Bristol stool form type 6) were more 
frequent in men.32 Furthermore, tight junction 
proteins, which play a significant role in the devel-
opment of irritable bowel syndrome (IBS), interact 
with both the gut microbiota and SCFAs. It was 
reported that Helicobacter pylori associated damage 
of several tight junction proteins, especially clau-
din-4 and occludin.33

3. Role of fiber, gut microbiota and SCFAs in the 
gut health

Fiber is commonly divided into two types, soluble 
and insoluble. These types vary in whole grains, 
fruits, vegetables, beans, peas, legumes, nuts, and 
seeds. Soluble fiber helps lower blood cholesterol 
and glucose levels, while insoluble fiber promotes 
the movement of material through the digestive 
system and increases stool bulk, helping with con-
stipation and irregular stools. A high-fiber diet 
offers several benefits, including normalizing 

bowel movements, maintaining bowel health, low-
ering cholesterol levels, controlling blood sugar 
level, and aiding in achieving a healthy weight. 
The intestinal microbiomes serve as primary pro-
ducers of SCFAs by breaking down polysaccharides 
from dietary fibers and indigestible starches. The 
amount of SCFAs production changes throughout 
our lives, mirroring variations in our gut micro-
biome composition over the lifespan.34,35 

Furthermore, the diversity of our diet, which varies 
across different stages of life, significantly influ-
ences the amount of SCFAs generated in the intes-
tine by affecting the substrates available for SCFA- 
producing bacteria.36 Existing research indicates 
that plant foods (vegetables, fruits, herbs, nuts, 
beans, and whole grains), seafood, meat (excluding 
red meat), and those with high dietary fiber content 
could protect against CRC. However, adhering to 
a western diet, which is high in sugar and fat, seems 
to have the opposite effect.37 A high fat and sugar 
diet can lead to the onset of CRC by disrupting gut 
microbiota and metabolomic balance, weakening 
gut barrier integrity, altering immunity and pro-
moting CRC development.38 Additionally, obesity 
induced by a high-fat diet can promote the prolif-
eration of leucine-rich repeat-containing 
G protein-coupled receptor 5 (Lgr5+) intestinal 
stem cells and increase the initiation of tumorigen-
esis through the activation of peroxisome prolif-
erator-activated receptor delta (PPAR-δ), as shown 
in murine models.39 Scott et al.,40 reported that 
plant-derived polyphenols help to prevent CRC 
development by increasing abundance of butyrate- 
producing bacteria in the gut, such as Lactobacillus 
and Bifidobacterium resulting in increased SCFAs 
production. The positive impacts of dietary fiber 
are primarily attributed to its fermentable soluble 
components, which result in the production of 
SCFAs within the intestinal microenvironment. 
This process of transforming dietary fiber into 
SCFAs is carried out by diverse gut microbiota. 
Dietary fiber boosts SCFA levels in the intestines 
by increasing Firmicutes and decreasing 
Bacteroides, thereby reducing the progression of 
CRC in mouse models.41,42

Animal studies have shown that dietary fiber 
with certain chemical structures can consistently 
and predictably alter the gut microbiota and its 
metabolic processes. This alteration helps protect 
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against CRC, especially in people whose microbiota 
includes colonic butyrate producers.43,44 The CRC 
patients have a unique gut microbiota profile, when 
compared to that of healthy individuals. In CRC 
patients, there is a significant enrichment of 
Bacteroides fragilis, Fusobacterium nucleatum, and 
Escherichia coli, alongside a decreased abundance of 
SCFA-producing bacteria.45 Previous studies have 
demonstrated that several probiotics bacteria known 
for producing SCFAs include Bifidobacterium, 
Clostridium butyricum, Streptococcus thermophilus, 
Lactobacillus rhamnosus, Lactobacillus acidophilus, 
Lactobacillus reuteri, and Lactobacillus casei.46 

Specifically, Clostridium butyricum can inhibit CRC 
cell proliferation through modulation of Wnt/β- 
catenin signaling pathway by reducing histone deace-
tylase (HDAC) activity, which helps to prevent CRC 
tumorigenesis in mouse models.47

One of the common gut commensal organisms, 
Lactobacillus rhamnosus can reduce the tumor bur-
den, increase the anti-tumor immune responses in 
CRC, and enhance immunotherapy.48 Treatment 
of CRC tumor models with Lactobacillus acidophi-
lus lysates combined with anti-CTLA-4 blocking 
antibody (ipilimumab, tremelimumab), have 
demonstrated that the lysates effectively enhance 
anti-tumor immunity and can inhibit CRC cell 
growth.49 Similarly, Akkermansia muciniphila, 
have the ability to produce SCFAs, and act as 
a potential protective probiotic by promoting the 
augmentation of M1-like macrophages in mice, 
which helps inhibit the development of CRC.50 

Multiple studies have explored the link between 
SCFAs, gut bacteria, and their role in the develop-
ment of (CRC),6–8,51,52 (Tables 2 and 3). Existing 
literature on bacterial microbiome-based anti-CRC 
therapy has shown encouraging results. However, 

most studies have been confined to cellular or 
animal models.81 Before such therapies can be 
applied clinically, thorough assessments of effec-
tiveness and safety, detailed investigations into the 
mechanisms involved, and extensive clinical testing 
are crucial.

4. SCFAs impact on gut homeostasis

SCFAs helps to maintain the gut homeostasis and 
prevent chronic diseases. SCFAs are most abundant 
in the proximal colon, where they are either 
absorbed and used by enterocytes locally or trans-
ported across the gut epithelium into the blood-
stream. SCFAs have a major impact on gut 
homeostasis, through mechanisms such as regulat-
ing energy metabolism, strengthening the gut bar-
rier, modulating immune responses, and 
participating in multiple metabolic processes.82 

Additionally, SCFAs make up about 10% of the 
daily caloric intake.83 Isolated colonic epithelial 
cells show a high rate of CO2 production, suggesting 
that these cells derive 60–70% of their energy from 
SCFA oxidation.84 Colonocytes have higher affinity 
for butyrate over acetate and propionate, primarily 
oxidizing it into ketone bodies and CO2. The mole-
cular ratio between acetate, propionate, and butyrate 
in the colonic epithelium is approximately 60:20:20, 
respectively.85 Donohoe et al.,86 demonstrated that 
Butyrivibrio fibrisolvens strain have the potential to 
maintain NADH/NAD+ and ATP levels in the 
colon. Colonocytes utilize butyrate, and butyrate 
produced by this strain serve as a primary energy 
source in the colon. This finding led to the conclu-
sion that butyrate rescuing effect is due to its role as 
an energy source rather than as a regulatory agent. 
SCFAs produced by gut bacteria can be transported 

Table 2. Short-chain fatty acids and their intestine gut microbial producers.
Microbial 
metabolites Gut microbes Ref.

Acetate Lactobacillus brevis, Lactobacillus bifermentans, Bacillus amyloliquefaciens, Bifidobacterium indicum, Bifidobacterium 
biavatii, Bifidobacterium animalis, Bifidobacterium asteroides, Bifidobacterium bifidum, Bifidobacterium ruminantium, 
Bifidobacterium merycicum, Bifidobacterium thermacidophilum, Bifidobacterium dentium Bifidobacterium longum, 
Bifidobacterium adolescentis, Bacteroides fragilis, Prevotella melaninogenica, Prevotella intermedia, Akkermansia 
muciniphila, Ruminococcus spp., Blautia hydrogenotrophica, Coprococcus spp., Clostridium spp., Streptococcus spp.

7,8,53–56

Butyrate Lactiplantibacillus plantarum, Coprococcus eutactus, Coprococcus catus, Coprococcus comes, Clostridium butyricum, 
Butyricicoccus pullicaecorum, Eubacterium hallii, Clostridium difficile, Faecalibacterium prausnitzii, Butyricicoccus 
pullicaecorum, Anaerostipes hadrus, Eubacterium rectal, Roseburia faecis, Ruminococcus gnavus, Butyrivibrio fibrisolvens

7,8,56–63

Propionate Streptococcus spp., Bacteroides spp., Salmonella spp., Dialister spp., Phascolarctobacterium succinatutens, Roseburia 
inulinivorans, Megasphaera elsdenii, Veillonella atypica, Coprococcus catus, Ruminococcus obeum, Blautia 
hydrogenotrophica, Lactobacillus rhamnosus, Lactobacillus gasseri, Lactobacillus hallii, Lactobacillus reuteri

7,8,11,56,64
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into colonic epithelial cells in the form of H+ or Na+ 

electrolytes. These electrolytes are directly involved 
in butyrate transport, increasing Na+ and Cl− uptake 
and promoting the release of bicarbonate (HCO3

−) 
into the lumen.87–89 Interestingly, the efficiency of 
electrolyte absorption varies across the different 
regions of the gut due to differences in transporter 
genes expression.90

SCFAs have a wide range of effects on the host, 
including impacts on metabolism, cell differentia-
tion, and rapid cellular reproduction, primarily due 
to their influence on gene regulation. Various 
reports have shown that butyrate epigenetically acti-
vates expression of 5–20% of human genes.91–93 

Butyrate is more effective than propionate in inhi-
biting histone deacetylase and lysine activity in 
cells.94,95 Enhancing histone acetylation (HDAC) 
activity with the help of histone acetyltransferase, 
propagates butyrate metabolism to acetyl-CoA93,96 

(Figure 2). SCFAs plays a significant role in the post- 
translational modification of histones by elevating 
their acetylation levels. This increase in histone 

acetylation enhances the accessibility of transcrip-
tion factors to the promoter regions of specific 
genes, thereby influencing their transcription. 
Inhibition of HDAC by butyrate not only increases 
gene transcription but also leads to the suppression 
of several genes, including LHR, XIAP, and 
IDO-1.97,98 In a colonic cell line, 75% of upregulated 
genes rely on ATP citrate lyase (ACLY) activity at 
a 0.5 mm butyrate concentration, whereas 25% are 
independent of this activity. At a higher concentra-
tion (5 mm), these proportions are reversed, sug-
gesting that gene regulatory mechanisms depend 
on butyrate concentration. Furthermore, butyrate 
has been shown to modify not only histone acetyla-
tion levels but also the acetylation of other proteins, 
such as transcription factors SP1 and Foxp3.99,100 

SCFAs generated by the gut microbiota also pro-
mote crotonylation through their histone acetylase 
activity.101 This modification is commonly observed 
in the epithelial cells of the small and large intestines 
and in the brain. Presence of Crotonyl-CoA on 
histones is linked to regulation of the cell cycle.102 

Table 3. Key gut microbiota linked to the onset and progression of colorectal cancer (CRC).
Gut microbiota Experimental Development of CRC Ref.

Bacteroides 
fragilis

cloned HT29/C1 cells Releases the B. fragilis enterotoxin, which promotes E-cadherin cleavage and supports the 
spread of CRC

65

Min (Apc±) mouse model Mediates colitis and protected colon carcinogenesis 66
ApcMin mice Bacteroides toxin promotes the development of cancer, multi-step inflammatory process in 

colonic epithelial cells, which depends on IL-17 R, NF-κB, and Stat3 signaling pathways
67

Streptococcus 
gallolyticus

Xenograft model and AOM-induced 
mouse model

Tumor promoting agent and increased rates of β-catenin, c-Myc and PCNA for diagnosis 
and treatment

68

Streptococcus 
bovis

AOM pre-treated rats Promoted the development of early preneoplastic lesions 69

Fusobacterium 
nucleatum

SW480, HCT116, and CRC xenograft 
model

Promotes chemoresistance by targeting TLR4 and MYD88 innate immune autophagy 
signaling

70

ApcMin/+ mouse model Fusobacterium nucleatum enhances the development of intestinal tumors and alters the 
tumor immune microenvironment

71

Endothelial cells Promotes carcinogenesis development by inducing gastrointestinal inflammation and host 
immune response in the CRC microenvironment

72

Eubacterium 
rectale

AOM/DSS-treated mice model Produce butyrate to induce the inflammatory cytokines IL-1β, IL-6, COX2, and TNF-α in 
mice, contributing to inflammation and epigenetic changes that disrupt the homeostasis 
of the intestinal flora

47

Faecalibacterium 
prausnitzii

Murine models Potential next-generation probiotics and inhibit the cancer 73

Lactobacillus 
casei BL23

AOM/DSS-treated mice model Functions as an anti-inflammatory agent by inhibiting cell proliferation and promoting 
apoptosis, while also reducing IL-22 levels, which play a role in immune modulation

74

Escherichia coli 
NC101

AOM/modified microbiota in 
interleukin-10-deficient (Il10−/−) 
mice

Colibactin, a toxin that damages DNA, acts as a tumor-promoting agent and contributes to 
the progression of CRC

75

Escherichia coli BALB/cJ mice DNA damage at the enterocyte level in human intestinal microflora leads to genomic 
instability

76

ApcMin/+/Atg16l1ΔIEC Produced colibactin and inhibited suppress CRC oncogenesis development 77
Enterococcus 

faecalis
Germ-free IL-10−/− and Wt mice Releases metalloprotease gelatinase and enhances chronic inflammation by compromising 

the integrity of the epithelial barrier
78

Wistar rats Production of extracellular free radicals and promotion of chromosomal instability, leading 
to polyps and CRC development

79

Clostridium 
septicum

SupT1 cell line Secretes alpha toxin, which binds specifically to glycophosphatidylinositol receptors on the 
cell surface

80
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Furthermore, studies have shown that butyrate 
affects not only histone acetylation but also impacts 
the levels of DNA and protein methylation and 
phosphorylation. Notably, butyrate exhibits a dual 
function in epithelial cellular metabolism. It also 
acts as the key energy source for healthy intestinal 
epithelial cells (IEC) while also suppressing the 
growth of cancerous cells. This effect, referred to 
as the butyrate paradox or Warburg effect,93 arises 
from a metabolic shift in cancer cells, which prefer 
glucose as their energy source. The inhibition of 
rapid cell growth is typically linked to increased cell 
cycle arrest, DNA damage, and reactive oxygen 
species (ROS) production indicating that SCFAs 
may trigger programmed cell death signaling in 
cancer cells.103–106 Due to the considerable meta-
bolic changes in cancer cells, the production and 
availability of various metabolites, including acetyl- 
CoA, are modified. Acetyl-CoA plays a crucial role 

in multiple metabolic pathways and serves as 
a fundamental cofactor for histone acetyltrans-
ferases. SCFAs has beneficial effects on gut home-
ostasis highlight their potential as therapeutic 
targets for improving gastrointestinal health and 
preventing diseases related to gut dysfunction.

5. SCFAs role in epigenetic regulation of 
colorectal carcinogenesis

Chemotherapy agents like 5-FU and targeted 
immunotherapies such as cetuximab are widely 
used in treating CRC.107 However, these 
approaches often encounter issues related to their 
side effects and low therapeutic effectiveness. The 
butyrate-producing intestinal microbiome has 
attracted attention as a potential target for CRC 
treatment. For example, the proliferation of HT- 
29 cells was inhibited when treated with culture 

Figure 2. SCFAs primarily act on target cells through three mechanisms. (i) The first mechanism involves the binding of SCFAs to 
GPCRs on the cell membrane, such as GPR109A, GPR43, and GPR41. This binding can inhibit downstream pathways, including PLC, 
MAPK, Nf-κB, and others. (ii) SCFAs can enter the cell with the help of transporters on the cell membrane, then move into the cell 
nucleus where they inhibit HDAC and activate HAT. This results in increased histone acetylation, the gradual loosening of dense 
chromosomes, and ultimately, increased gene (LHR, XIAP or IDO-1) expression. (iii) Another mechanism of action is that SCFAs enter 
the cell with the help of AhR, then move to the nucleus. Nuclear receptors, such as AhR and ARNT, can bind to DNA, which suppresses 
gene expression involved in detoxification, metabolism, cell development, and the essential role of cellular sensors for xenobiotics, 
coordinating the body response.
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supernatant containing butyrate from Lactobacillus 
plantarum strains, cyclin D1 acts in the G1-S tran-
sition and cyclin B has interest in the transition to 
M phase.108 Furthermore, administering butyrate- 
producing Butyricicoccus pullicaecorum to CRC- 
bearing mouse models resulted in weight gain and 
lower serum carcinoembryonic antigen levels.109 

Treatment with sodium butyrate (NaB) also 
increased the expression of SCFA transporters, 
including solute carrier family 5 member 8 
(SLC5A8) and G protein-coupled receptor 43 
(GPR43), in SW480 and SW620 CRC cell lines.109 

Bacteroides pullicaecorum is a potential butyrate 
producing bacteria that has been shown to sup-
press the growth of colon cancer cells by down-
regulating the gene expression of chromosome 
segregation 1-like (CSE1L).110 Another butyrate- 
producing bacterium, Clostridium butyricum, was 
found to reduce the development of intestinal 
tumors induced by a high-fat diet (HFD) in 
a mouse model. This effect was achieved by 
decreasing the levels of pathogenic and bile acid- 
biotransforming bacteria, while increasing those of 
SCFA-producing bacteria.47 Additionally, the cul-
ture supernatant of C. butyricum and sodium buty-
rate (NaB) promoted apoptosis in cells by 
inhibiting the Wnt/β-catenin signaling pathway 
and enhancing the expression of GPR43 and 
GPR109A in the HCT 116 cell line, as observed 
through an analysis of the expression of these 
receptors in CRC tissue compared to normal colo-
nic tissue.47 Moreover, the propionate-producing 
bacterium Bacteroides thetaiotaomicron had effects 
comparable to those of NaB in CRC cell lines.107 

Treatment with the culture supernatant from 
B. thetaiotaomicron in combination with sodium 
propionate (NaP) markedly reduced the prolifera-
tion of CRC cell lines and increased cell apoptosis 
rates.107 Ohara et al.,111 demonstrated the mechan-
ism of anti-tumor effects of SCFAs (butyric acid, 
isobutyric acid, and acetic acid) on CRC cells and 
examined gene expression. The expression levels of 
791 genes involved in DNA replication (main genes 
involved such as E2F1, UHRF1, HIST2H3A, 
HIST1H4K, HIST1H4L, HIST1H3B, HIST1H3D, 
HIST1H3H, FOXM1, etc.) significantly decreased 
less than 50% when compared untreated cells. 
McLoughlin et al.,112 found that meta-analysis 
described the impact of SCFAs, prebiotics and 

probiotic in various conditions, including cancer, 
inflammatory bowel disease, obesity, healthy popu-
lation, diabetes, kidney and liver disease. They 
found that SCFAs levels were negatively associated 
with the expression of inflammatory proteins and 
high level of SCFAs associated with downregula-
tion of inflammatory cytokines such as C-reactive 
protein (CRP), tumor necrosis factor (TNF), and 
interleukin-6 (IL-6).112 Nomura et al.,113 assessed 
fecal acetic acid, butyric acid, propionic acid, vale-
ric acid, and plasma isovaleric acid levels in patents 
with solid tumors treated with PD-1 inhibitors (for 
example, pembrolizumab) and discovered that 
fecal SCFA levels may be linked to the efficacy of 
PD-1 inhibitors, suggesting that SCFAs derived 
from gut microbiota potentially modulates PD-1 
checkpoint blockade effectiveness. Determination 
of SCFA level from fecal materials are noninvasive, 
this could be used for routine patient monitoring to 
assess sensitivity of patients to anti-cancer therapy, 
based on SCFA production through gut micro-
biota. Aune et al. examined the relationship 
between dietary fiber, whole grains, and CRC risk. 
Numerous epidemiological studies supported that 
protective role of dietary fiber against CRC through 
various mechanisms, such as bile acids, reabsorp-
tion of biogenic substances, fecal transit time, and 
including the formation of SCFAs.114–120

Cancer progresses through multiple step pro-
cess, and SCFAs offer the advantage of affecting 
the expression of a wide range of genes and path-
ways, including those involved in carcinogenesis 
(Figure 3). This contrasts with conventional anti- 
cancer treatments, which generally focus on target-
ing a single molecule or pathway. The process of 
carcinogenesis includes both specific mutations 
and epigenetic modifications that alter gene 
expression.121 Specific genes influence several sig-
naling pathways that govern cell fate, survival, and 
genome stability.122 Changes in genes that regulate 
cell fate, such as Wnt, Hedgehog, and Notch,123 can 
upset the balance between differentiation and pro-
liferation, leading to sustained cellular growth 
a characteristic feature of cancer cells. Extensive 
changes in the epigenetic landscape, including 
DNA methylation, histone code, non-coding 
RNA, as well as the silencing of tumor suppressor 
genes and the activation of oncogenes, are funda-
mental features of cancer.124 Since both genetic and 
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epigenetic alterations in gene expression can be 
passed down through cell divisions, they signifi-
cantly contribute to tumor development. SCFAs 
can mitigate many of the epigenetic changes linked 
to cancer, suggesting that administering SCFAs to 
individuals at high risk for tumor development 
could delay or prevent cancer initiation at the 
molecular and cellular levels, before the occurrence 
of specific mutations.

The epidermal growth factor receptor (EGFR) is 
a transmembrane glycoprotein that interacts with 
ligands such as epidermal growth factor (EGF) and 
transforming growth factor alpha (TGFα). When 
activated, its intrinsic tyrosine kinase activity initi-
ates a cascade of downstream signaling pathways, 
including mitogen-activated protein kinases 
(MAPK), phosphoinositide 3-kinases (PI3K), pro-
tein kinase B (Akt), mammalian target of rapamycin 
(mTOR), and Ras/Raf/MEK/ERK, which promote 
processes like cellular proliferation, angiogenesis, 
and metastasis. EGF signaling may play a crucial 
role in the development of hepatocellular carci-
noma, and its inhibition by SCFAs might help 

delay the progression to dysplasia and cancer.125 

Additionally, EGFR (ERBB1) molecules activate sig-
naling pathways such as JAK/STAT, Ras/ERK, 
c-Jun, and PI3K/Akt/mTOR, which essentially lead 
to cell proliferation by activating downstream tran-
scription factors through these pathways.126 SCFAs 
influence all these pathways by modulating the 
intestinal system, indicating that SCFAs may induce 
apoptosis and inhibit various oncogenic processes, 
such as prolonged cell survival, proliferation, angio-
genesis, and metastasis. Wang et al.,126 showed that 
nuclear factor of activated T cells (NFATc) plays 
a significant role in regulating phosphatase and ten-
sin homolog (PTEN) expression in intestinal cells. 
Specifically, NFATc1 and NFATc4 might serve as 
crucial modulators of intestinal cell proliferation 
and differentiation by controlling PTEN expression, 
it is a tumor suppressor gene. The reduction or loss 
of PTEN function has been linked to various can-
cers, such as breast cancer and CRC, and contributes 
to increased cell proliferation and tumor develop-
ment. However, phosphatidylinositol-4,5-bispho-
sphate 3-kinase catalytic subunit alpha (PI3KCA) 

Figure 3. The intestinal microbiota contributes to the epigenetic regulation of colorectal cancer by producing SCFAs, which serve as 
both substrates and regulators that influence chromatin-modifying enzymes. The mechanisms by which this occurs is the inhibition of 
histone deacetylase activity, leading to chromatin alterations typically linked to the upregulation of target gene expression in a variety 
of different cancer cell lines.
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and PTEN oncogene proteins have observed to be 
associated with multiple cancers, as both play sig-
nificant roles in cell division and growth. 
Downregulation of Akt signaling leads to decreased 
expression of murine double minute 2 (mdm-2), an 
oncogene implicated in CRC carcinogenesis mdm-2 
is responsible for tagging the tumor suppressor p53 
for degradation through ubiquitination. Reduced 
mdm-2 activity stabilizes p53, allowing it to induce 
cell cycle arrest, promote DNA repair, or trigger 
apoptosis. Furthermore, reduced Akt signaling also 
lowers NF-κB activity, increasing cell sensitivity to 
apoptosis.127 Ultimately, SCFAs help to restore bal-
ance by normalizing these pathways that are consti-
tutively activated in cancer cells, thereby reducing 
the likelihood of tumor development and progres-
sion. Early-stage tumors persist and expand in 
hypoxic environments due to the expression of 
hypoxia-inducible factor 1 (HIF-1). This, in turn, 
triggers the transcription of the MET proto- 
oncogene.128 MET/HGFR is a tyrosine protein 
kinase that interacts with hepatocyte growth factor 
(HGF). Upon activation, MET initiates signaling 
pathways involving Ras, STAT3, β-catenin, and 
PI3K, causing to prolonged MAPK activation, 
which supports cell survival, cell growth, angiogen-
esis, and metastasis.129 SCFAs epigenetically inhibit 
the FGFR2 and Hippo signaling pathways, including 
PI3K/Akt and Ras/Raf, through HDAC inhibition, 
despite these pathways also being targets for genetic 
alterations in carcinogenesis.122,130 The potential 
anti-cancer agent, valproic acid and HDAC inhibi-
tors, both of which strongly suppresses cell prolif-
eration in the tumor-stroma. Valproic acid inhibited 
HGF production in connective tissue, influenced by 
various ligands such as fibroblast growth factor, 
EGF, platelet-derived growth factor (PDGF), phor-
bol 12-myristate 13-acetate (PMA), prostaglandin 
E2 (PGE2), butyric acid, and trichostatin A (TSA), 
without causing cytotoxic effects. Since HGF acti-
vates c-MET signaling, reducing its production 
weakens both MET signaling and HepG2 cell migra-
tion in vitro. This implies that HDAC inhibition 
impacts chemoprevention of tumor metastasis.131 

Acetate has been shown to influence programmed 
cell death in CRC by activating caspase 3 and caus-
ing DNA fragmentation, ultimately leading to cell 
death.7 Additionally, acetate increases cell surface 
expression of Fas on CD8+ T cells and Fas ligand 

(FasL) on adenocarcinoma epithelial cells, facilitat-
ing the induction of tumor cell apoptosis by tumor- 
infiltrating T lymphocytes.132 Butyrate, acetate and 
propionate can suppress NF-κB signaling and 
reduce lipopolysaccharide (LPS) stimulated TNF+ 

human neutrophils.133 Since TNF activates NF-κB, 
this leads to further inhibition of NF-κB 
signaling.134 Propionate induces apoptosis in CRC 
by decreasing the expression of arginine methyl-
transferase, however, the precise mechanisms are 
still unclear.7 These data emphasize the diverse 
impact of SCFAs in regulating multiple aspects of 
carcinogenesis and highlight its potential as 
a therapeutic compound capable of targeting multi-
ple signaling pathways involved in inflammation 
and cancer. In this regard, SCFA-based therapies 
could counteract the impact of specific oncogenic 
mutations by regulating the same pathways epigen-
etically. Existing reports summarizing how gut 
microbiota influences epigenomic changes in CRC 
are listed in Table 4.

6. SCFAs and immunological homeostasis in 
colorectal cancer (CRC)

Overall, existing research suggests that SCFAs 
boost the ability of the immune system to combat 
pathogens. In animal studies, SCFAs have been 
shown to enhance immune responses against 
extracellular bacteria such as Citrobacter rodentium 
and Clostridioides difficile, viruses including influ-
enza, respiratory syncytial virus, intracellular bac-
teria like Listeria monocytogenes and Salmonella 
typhimurium.146 The gut microbiota plays 
a crucial role in the immune system by influencing 
the differentiation of certain types of immune cells 
and their inflammatory functions in part via the 
regulation of the nuclear factor kappa B (NF-κB) 
pathway.147 Additionally, butyrate and propionate 
are known to exert anti-inflammatory effects by 
affecting immune cell migration, adhesion, and 
cytokine production.148 Furthermore, propionate 
promote the surface expression of natural killer 
group 2D receptor (NKG2D) ligands on cells, 
thereby boosting the immune response in CRC.148

Toll-like receptors (TLRs), a type of bacterial recog-
nition receptors, are crucial for the innate immune 
system. They can stimulate the growth of intestinal 
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epithelial cells and enhance the production of antimi-
crobial peptides.149 Butyrate and propionate modu-
late the activity of various HDAC is an endogenous 
TLR ligand.150 TLR5 is abundantly expressed in the 
colon, it binds to flagellin from gram-negative gut 
bacteria, initiates the activation of several intracellular 
pathways.151 Butyrate has been shown to enhance 
immunomodulatory responses mediated by bacterial 
flagellin in gut epithelial cells through the induction of 
TLR5 expression. Additionally, flagellin stimulates the 
release of anti-inflammatory factors such as IL-10 and 
TGF-β, which diminish inflammation.152 Butyrate, 
a key metabolite produced by Enterobacterium, can 
activate TLR5 transcription through Sp3, which upre-
gulates TLR5 and promotes the expression of inflam-
matory cytokines like IL-6, IFN-γ, TNF. These 
cytokines improve the colonic inflammation in 

a mouse model of colitis.153 Butyrate has been 
shown to enhance the expression of TLR4 and 
increase the phosphorylation of MAPKs and NF-κB 
in CRC. However, the precise mechanism underlying 
these effects has not yet been fully elucidated.154 

Currently, there is limited research on the mechanistic 
pathways of SCFA-TLR interactions in innate immu-
nity, and the relationship between SCFAs and TLR 
signaling pathways remains unclear. Nonetheless, 
existing studies have demonstrated that SCFAs exert 
anti-inflammatory effect by modulating TLR expres-
sion, which is crucial for maintaining immune home-
ostasis in the body.

Previous studies have demonstrated that SCFAs 
significantly impact neutrophil activity through 
various pathways.155 SCFAs can modulate the 
expression of important genes responsible for 

Table 4. Gut microbiome associated with epigenetic changes in colorectal cancer (CRC).

Microbiome
Epigenetic 

modification Summarized Ref.

Escherichia coli, or Escherichia coli expressing bile salt 
hydrolase (E.coli-BSH), and fecal samples of mice 
or zebra fishes

Non-coding RNAs The lncRNA-based prediction model accurately differentiated between 
various gnotobiotic mice and identified transplanted microbes from 
fecal samples or zebra fish. It achieved high accuracy with fewer 
lncRNAs than protein-coding genes, demonstrating the potential of 
lncRNA profiles for distinguishing gut microbes and aiding in the 
development of lncRNA biomarkers

135

Fusobacterium nucleatum miRNAs F. nucleatum drives CRC chemoresistance to small drug 
chemotherapeutics by targeting and reducing miR-18a* and miR- 
4802, activating the autophagy pathway

70

Gut microbiota miRNAs Microbiota-sensitive miRNA, miR-375-3p, and found that its 
suppression in ex vivo enteroids leads to increased proliferation, 
suggesting how microbiota may regulate intestinal epithelial stem 
cell proliferation in vivo

136

Commensal bacteria miRNAs The expression of commensal microbiome-dependent miR-21-5p in 
IECs regulates intestinal epithelial permeability through ARF4, 
suggesting it as a potential target for addressing intestinal epithelial 
barrier dysfunction

137

Gut microbiota miRNA The expression levels of miRNAs let-7b, miR-141, and miR-200a were 
notably decreased in germ-free mice

138

Gut microbiota miRNA Host gut epithelial cells and Hopx+ cells are the primary sources of 
fecal miRNAs, which enter bacteria to regulate their gene expression 
and growth. These fecal miRNAs are crucial for maintaining 
a healthy gut microbiota

139

Gut microbiota Modifications of 
histone

Histone proteins in adjacent nucleosomes function as poised 
(H3K4me1) or active (H3K27ac) enhancers

140

Intestinal microbiota Histone The microbiota regulates circadian fluctuations in serum metabolites 
and influences the circadian epigenetic and transcriptional 
landscape

141

Gut microbiota Histone Gut microbiota influence host histone acetylation and methylation in 
different tissues. A Western diet decreases SCFA production, and its 
associated chromatin modifications driven by the microbiota, 
whereas SCFAs can replicate these chromatins and transcriptional 
effects

142

Intestinal microbiota Histone methylation Histone H3-lysine 4 trimethylation (H3K4me3) marks was altered upon 
gut microbial colonization

143

Gut microbiota SCFAs enhanced histone H3 lysine 18 crotonylation (H3K18cr) through 
the inhibition of HDACs

101

Lactobacillus acidophilus, Bifidobacterium infantis, 
and Klebsiella species

Methylation Microbiota treatment caused varying methylation alterations in 200 
DNA regions

144

Gut microbiota DNA methylation and 
transcriptome

The frequency of methylation changes in genes increased with the age 
of germ-free mice.

145
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production of cytokines and chemokines, which 
are critical for neutrophil activation and function-
ality. This modulation can promote the recruit-
ment of neutrophils to the sites of infection or 
inflammation. Additionally, SCFAs can also affect 
the generation of reactive oxygen species (ROS) by 
neutrophils.156 While physiological levels of ROS 
are essential for pathogen elimination, whereas 
excessive ROS production can cause tissue damage. 
SCFAs regulate ROS levels in neutrophils, thus 
supporting a balanced immune response. 
Neutrophils, which express high levels of FFAR2, 
show increased sensitivity to SCFAs.157 For exam-
ple, in cases of experimentally induced sterile 
inflammation using dextran sulfate sodium (DSS), 
butyrate treatment has been shown to impede neu-
trophil migration to the colon, thereby decreasing 
the local production of cytokines that drive 
inflammation.158 Recent studies also suggested 
that supplementation of butyrate like colonic lumi-
nal concentrations, may promote the formation of 
neutrophil extracellular traps (NETs).159,160 

Neutrophils are among the first cells to respond 
to inflammatory signals plays a crucial role in 
detecting and eliminating pathogens like bacteria 
and fungi.161 Neutrophils significantly impact the 
inflammatory process by elevating the number of 
mononuclear cells at the site of inflammation. 
Neutrophils also produces key enzymes, including 
cyclooxygenase (COX), which facilitates the pro-
duction of eicosanoids, and inducible nitric oxide 
synthase (iNOS or NOS II). These enzymes induce 
production of soluble factors that regulate various 
aspects of inflammation, such as leukocyte adhe-
sion and recruitment.161

Macrophages play a crucial role in preserving 
balance within the gut.162 Chang et al.,163 found 
that butyrate induced suppression of inflammatory 
cytokine production by intestinal macrophages is 
associated with the inhibition of HDAC activity. 
Butyrate and niacin, which are metabolites pro-
duced by gut bacteria, promote the production of 
IL-18 in the colon via Gpr109a. Butyrate also 
increases IL-10 and Aldh1a levels in antigen- 
presenting cells (APCs) through a Gpr109a- 
dependent mechanism. Mice deficient in Niacr1 
(Niacr1−/−) are more susceptible to colitis and 
colon cancer. Gpr109a signaling plays a protective 
role in maintaining colon health, particularly when 

gut bacteria and dietary fiber are scarce.164 Single- 
cell RNA sequencing uncovered that the antibac-
terial activity induced by butyrate is marked by 
elevated expression of the S100A8 and S100A9 
genes, which code for calprotectin, a protein 
known for its antibacterial effects. Consequently, 
butyrate enhances the antibacterial activity of 
macrophages by inhibiting mTOR.165 

Additionally, SCFAs inhibits M2 polarization in 
alveolar macrophages and potentially activate 
GPR43. Butyrate and propionate enhance H3 acet-
ylation and suppress M2 polarization through the 
inhibition of HDAC.166 SCFAs similarly affect con-
ditions related to eosinophilia, such as asthma, 
atopic dermatitis, inflammatory bowel diseases, 
and eosinophilic esophagitis.167 Furthermore, pro-
pionate and butyrate enhance IgE-mediated baso-
phil degranulation.168,169 This indicates that SCFAs 
could play a significant role in regulating alkaline 
granulocyte activation, IL-13 production, and 
degranulation.

T helper (Th17) cells, a crucial subset of CD4+ 
effector T cells, are predominantly present in gut- 
associated tissues. The activation and accumulation 
of these cells in the gut are influenced by their 
interactions with specific gut microbes and exter-
nal pathogens.170,171 Propionate is involved in the 
regulation of CD4+ T cell functions, particularly 
affecting Th17 cells. In experimental models of 
colitis and multiple sclerosis, propionate has been 
shown to reduce the production of Th17 cells in the 
small intestine and to mitigate segmented filamen-
tous bacteria (SFB)-induced autoimmune inflam-
mation in the central nervous system (CNS).172 By 
enhancing the glycolytic activity of active Th17 
cells, propionate promotes IL-10 production, 
which further affects their immunological effect. 
In autoimmune prostatitis mouse model, propio-
nate levels are lower, but when supplemented with 
propionate, effectively reduced both Th17 cell 
activity and IL-17 production, leading to improve-
ments in the condition.173 In multiple sclerosis 
patients, propionate levels are diminished while 
Th17 cells are elevated; however, propionate sup-
plementation has been associated with a decrease 
in Th17 cell levels and a subsequent improvement 
in the diseases course.174 Additionally, supplemen-
tation with propionate and butyrate has been found 
to increase the expression of CCL20, a chemokine 
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that recruits Th17 cells to lung endothelial cells. 
This recruitment of Th17 cells contributes to 
a reduction in lung tumor foci and inhibits the 
metastasis of melanoma cells.175 Fusobacterium 
nucleatum strain Fn7–1 has been shown to increase 
the number of colonic Th17 cells, contributing to 
intestinal tumor progression. This effect is depen-
dent on the SCFA receptor FFAR. In the absence of 
FFAR, Fn7–1 does not alter the population of 
RORγt+ CD4+ T cells.176 Therefore, SCFAs are 
key regulators of Th17 cell induction and function 
in human diseases. However, further research is 
necessary to determine whether acetate and buty-
rate exert similar effects. In additionally, trypto-
phan metabolites produced by the gut microbiota 
play a significant role in regulating the immunor-
egulatory activities of Th17 cells, especially in the 
context of inflammation. In infant gut, 
Bifidobacteria are more abundant during the first 
month of life, but a decrease in their numbers 
is associated with elevated IL-17A levels and 
systemic inflammation. Supplementation with 
Bifidobacterium EVC001 has been shown to miti-
gate these effects by reducing of Th17 and Th2 cell 
populations within the intestine. One of the impor-
tant metabolites produced by EVC001, indole- 
3-lactic acid, which enhances the expression of 
galectin-1, an immunoregulatory protein that inhi-
bits the activation of Th17 and Th2 cells during 
their polarization.177 In contrast, recent studies 
have demonstrated that retinoic acid (RA) pro-
duced by SFB in the gut helps to protect against 
Citrobacter rodentium infection, with IL-17A- 
blocking antibodies unable to prevent this protec-
tion. This suggests that RA derived from SFB con-
tributes to host defense mechanisms independently 
of Th17 cells.178 Therefore, although microbiota- 
derived metabolites have the potential to activate 
Th17 cells, this response is not always predictable, 
and the exact mechanisms leading to their activa-
tion are not yet fully understood.

Bile acids (BAs), important metabolites derived 
from cholesterol, are divided into primary and 
secondary categories. Hepatocytes produce pri-
mary BAs, which are stored in the gallbladder and 
subsequently released into the duodenum to aid in 
lipid digestion. Around 95% of these bile acids are 
reabsorbed before they reach the terminal ileum, 
while the remaining 5% enter the intestine, where 

they are converted by gut microbiota into a range 
of secondary BAs.179 Metabolites of bile acids pro-
duced by gut microbiota play a key role in regulat-
ing the activity of RORγt+ cells and affecting 
disease vulnerability.180 For instance, 3-oxolitho-
cholic acid (3-oxoLCA), a secondary bile acid, inhi-
bits the differentiation of intestinal Th17 cells by 
binding to the RORγt transcription factor. 
Administration of 3-oxoLCA has been shown to 
lower Th17 cell populations in germ-free (GF) 
mice.181 Likewise, isolithocholic acid (isoLCA), 
another secondary bile acid, also prevents Th17 
differentiation by interacting with RORγt. Both 
3-oxoLCA and isoLCA are negatively correlated 
with the expression of Th17-associated genes and 
are found to be reduced in individuals with IBD.182 

In an inflammatory arthritis model, both isoLCA 
and 3-oxoLCA, produced by the gut bacterium 
Parabacteroides distasonis, directly suppress Th17 
cell differentiation, leading to anti-arthritis 
effects.183

Bifidobacterium species have been discovered in 
high-throughput screenings of human stool as cap-
able of converting 3-oxolithocholic acid 
(3-oxoLCA), a bile acid present in the gut, into 
isoallolithocholic acid (isoalloLCA), a secondary 
bile acid known for its immunomodulatory 
effects.184 IsoalloLCA has been shown to enhance 
cellular oxygen consumption, leading to the gen-
eration of mitochondrial reactive oxygen species, 
which subsequently upregulates FOXP3 expression 
and promotes the differentiation of Tregs.185 

However, there is limited direct research examin-
ing how Bifidobacterium species produce second-
ary bile acids and their specific influence on 
immune regulation. Another secondary bile acid, 
3β-hydroxydeoxycholic acid (isoDCA), has been 
found to inhibit TNFα and IL-6 production186 in 
dendritic cells (DCs) while promoting Foxp3 
expression, thereby increasing the number of per-
ipheral Tregs. Although Bifidobacterium lacks the 
7α-dihydroxylation enzyme required to convert 
cholic acid into isoDCA,187 they do express bile 
salt hydrolases that deconjugate bile acids, poten-
tially leading to the formation of other secondary 
bile acids with similar immune-modulatory 
properties.188,189 Furusawa et al., (2013) showed 
that butyrate treatment significantly increased his-
tone H3 acetylation in naive CD4+ T cells, 
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specifically affecting 70 transcription factors. One 
of the most notable targets, Foxp3, exhibited 
enhanced acetylation, which was associated with 
higher gene expression. The study found that buty-
rate promoted acetylation at the Foxp3 promoter 
and intragenic enhancer elements, including the 
conserved noncoding sequences CNS1 and 
CNS3.190 Furthermore, Arpaia et al., demonstrated 
that in CNS1-deficient mice, butyrate could not 
induce FOXP3 expression in naive CD4+ T cells. 
Given that CNS1 is necessary for the differentiation 
of peripheral sites (pTreg) cells (but not thymus 
(tTreg) cells, these results suggest that butyrate 
selectively drives pTreg cell differentiation in the 
gut.99

7. Anti-neoplastic effect of butyrate in 
microsatellite instability tumor cells

Butyrate is a potent anti-neoplastic agent in the 
colon, exhibiting properties that promote apopto-
sis, inhibit excessive cell growth, induce cell differ-
entiation, enhance immune defense, reduce 
angiogenesis, and alleviate inflammation.191 

Notably, butyrate has been shown to have 
a higher anti-neoplastic effect in microsatellite 
instability (MSI) tumor cells than in proficient 
mismatch repair (pMMR) tumor cells.192,193 

Studies have demonstrated that MSI tumor cells, 
such as HCT15, HCT116, and LoVo, are more 
sensitive to butyrate’s anti-proliferative effects 
compared to pMMR cells, including SW480 and 
HT29.194 Further the study found that 1 mm buty-
rate exposure significantly reduced MSI tumor cell 
proliferation, with the human mutL homolog 1 
(hMLH1)-defective HCT116 cell line being parti-
cularly responsive.194 Further research has con-
firmed these findings, showing that butyrate 
induces higher apoptosis rates and stronger inhibi-
tion of proliferation in hMLH1-deficient cells com-
pared to pMMR cells.194 Twelve -week exposure of 
MMR-deficient CRC cell lines (HCT15, HCT116 
and LoVo) and MMR-proficient lines (SW480 and 
HT29) to 1 mm butyrate significantly reduced cell 
proliferation, with stronger effect observed in the 
MMR-deficient lines. When butyrate treatment 
was discontinued and the cells were returned to 
normal medium, their proliferation rates returned 
to baseline levels.194 Notably, the MMR-deficient 

HCT116 cell line was particularly responsive to 
butyrate. Further studies have shown that hMLH1- 
defective line is more sensitive to butyrate than the 
MMR-proficient SW480 CRC cell line and the 
HCT116+chr3 (chromosome 3) cell line. Both stu-
dies indicated stronger inhibition of proliferation 
and induction of apoptosis in the hMLH1-deficient 
cells after exposure to 1 mm butyrate.194

8. Gut-brain axis and the role of hormones, 
neuro-mediators in immune response 
influenced by SCFAs

The gut-brain axis is an interconnected communi-
cation network that plays a crucial role in regulat-
ing both health and disease.195 CNS influences gut 
function through the hypothalamic-pituitary- 
adrenal (HPA) axis, as well as the sympathetic 
and parasympathetic divisions of the autonomic 
nervous system (ANS). Stress disrupts the normal 
functioning of the HPA axis, triggering the release 
of signaling molecules such as norepinephrine, 
catecholamines, serotonin or 5-hydroxytryptamine 
(5-HT), and cytokines. These molecules, produced 
by neurons, enterochromaffin cells, and immune 
cells, enter the gut lumen and affect the composi-
tion and functioning of the gut microbiota.196 

Studies have shown that the stress-induced 
increase in norepinephrine can enhance the growth 
of harmful gut pathogens.197 ANS also plays a role 
in modulating the influence of the CNS on gut 
microbiota. Acute stress leads to changes in para-
sympathetic and vagal activity directed at the gut 
and stomach,198 influencing important processes 
such as motility, permeability, acid secretion, and 
immune responses.199 These changes collectively 
impact the gut environment and are linked to 
microbial colonization in the small intestine and 
colon. Enteroendocrine cells (EECs) are specialized 
cells scattered throughout the gastrointestinal tract 
(GIT), comprising approximately 1% of the epithe-
lial cells of GIT. These cells play a crucial role in 
regulating gut motility, appetite, and hormone 
secretion by producing a variety of gut hormones 
in response to dietary signals. EECs are classified 
into distinct types, each based on the specific hor-
mone they produce, including ghrelin, nesfatin, 
somatostatin, 5-HT, gastrin, cholecystokinin 
(CCK), glucose-dependent insulinotropic 
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polypeptide (GIP), glucagon-like peptide 1 (GLP- 
1), and peptide YY (PYY).200 As sensory cells, EECs 
facilitate communication between the gut contents 
and the host’s physiological responses, influencing 
food intake regulation, insulin release, and beha-
vioral adaptations.

Gut hormones serve a range of functions across 
multiple tissues, from the GIT to the CNS. To date, 
more than 20 active gut hormones have been 
identified,201 many of which share overlapping 
actions and targets. While primarily studied for 
their roles in nutrient detection, digestion, and 
insulin regulation, recent research has revealed 
that gut hormones also play a key role in modulat-
ing anxiety and depression.202 SCFAs interact with 
FFAR2 and FFAR3 receptors on type-L enteroen-
docrine colonocytes,203 triggering the release of 
anorexigenic hormones, including peptide YY 
(PYY) and glucagon-like peptide 1 (GLP-1).204–207 

These hormones are then transported to the brain 
through vagal afferents208 or the bloodstream,209 

where they regulate appetite and food intake.210 

Acetate is known to cross the blood-brain barrier 
(BBB) and affect brain areas involved in satiety by 
enhancing the expression of hypothalamic 
neuropeptides.211 Furthermore, increased colonic 
propionate levels have been linked to a reduced 
preference for high-energy foods, a decrease in 
energy intake, and lower activity in attenuating 
reward-based eating behavior via striatal pathways, 
without changing PYY or GLP-1 levels.212 While 
some studies suggest that SCFAs can increase PYY 
and GLP-1 levels, others have found no 
effect.213,214 The inconsistent findings may be due 
to differences in study design, sample size, or dura-
tion of SCFA elevation. While early studies suggest 
that PYY and GLP-1 are expressed in several brain 
regions,215–218 including the nucleus tractus soli-
tarius (NTS), a primary projection area for the 
vagus nerve,215 these hormones have been asso-
ciated with reward processing, anti-anxiety and 
antidepressant effects, and enhancements in mem-
ory and neuroplasticity.219–223 However, further 
research is required to verify whether PYY is pro-
duced outside the GIT. Furthermore, the impact of 
SCFA-induced changes in these appetite-regulating 
hormones on anxiety, stress, or depression remains 
uncertain.

Under normal physiological conditions, 
immune cell activation and cytokine production 
have minimal impact on the CNS. However, sys-
temic infections can significantly influence cogni-
tion, behavior,224,225 and interactions between 
cytokines and neural processes can affect mood 
and motivation.226 Modifications in the micro-
biome may alter SCFA production, which could 
subsequently impact peripheral immunity and 
brain function. Improving barrier function could 
help reduce systemic inflammation, with the inter-
action of SCFAs and immune cells potentially play-
ing a crucial role in this process.227 SCFAs may also 
affect brain function through their influence on 
both the innate and adaptive immune systems. 
For instance, Mohle et al, reported a reduction in 
hippocampal neurogenesis after antibiotic treat-
ment, which was reversed by a combination of 
probiotics and microbiota recolonization.228 

Importantly, a study has showed a positive correla-
tion between LY6Chi monocyte levels in the brain 
and neurogenesis,228 suggesting a potential role for 
SCFAs in this relationship,229,230 which warrants 
further research. Systemic inflammation is com-
monly understood to contribute to 
neuroinflammation,227 though additional research 
is needed to fully determine the role of SCFAs in 
this process. Microglia, which serve as the brain’s 
primary immune cells, are essential for innate 
immune responses and brain development. 
Additionally, the gut microbiome has been shown 
to influence microglial function. Under normal 
conditions, a well-balanced microbiome supports 
the maintenance and maturation of microglia.231 

Notably, in germ-free mice, where microglia are 
typically underdeveloped, the supplementation of 
SCFAs such as acetate, butyrate, and propionate 
help restore microglial maturation, bringing them 
closer to the structure observed in specific patho-
gen-free (SPF) mice.231 While the mechanisms 
through which SCFAs influence microglial struc-
ture and function remain unclear, FFARs are likely 
involved. Studies have shown that mice lacking 
FFAR2 exhibit microglia with an underdeveloped 
appearance like those of germ-free mice.232 SCFAs 
regulate numerous processes along the microbiota- 
gut-brain axis, acting through both direct and 
indirect pathways, with epigenetic signaling 
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playing a central role. Further exploration of this 
complex interaction could lead to new therapeutic 
approaches for treating central nervous system 
disorders.

9. Medical translation of SCFAs in treating CRC

The medical translation of SCFAs in treating CRC 
is an active area of research. FMT has shown pro-
mise in germ-free mouse models of CRC, mimick-
ing the immune checkpoint inhibitor (ICI) effects 
observed in the donor.233 Ongoing clinical trials 
(NCT04729322 and NCT04130763) are examining 
these findings in greater detail. Additionally, FMT 
has shown promise in treating refractory ICI- 
induced colitis in patients. Probiotics, such as 
Bifidobacterium and Lactobacillus reuteri, have 
also demonstrated potential in alleviating ICI- 
induced colitis.234,235 Moreover, specific probiotics 
have been found to enhance the efficacy of ICIs in 
mouse models of CRC,236 Lactobacillus rhamnosus 
Probio M9 and blends like guanosine, α- 
ketoglutaric acid (α-KG), 6-hydroxy-3-succinyl-
pyridine, N-acetyl-l-glutamic acid, pyridoxine, 
dopaquinone, xanthosine, aldosterone, L-threo- 
3-methylaspartate, 3′-aenylic acid, adenosine 5′- 
diphosphate, oleandolide and terpentedienyl 
diphosphate, have been found to enhance the effi-
cacy of ICIs in mouse models of both microsatellite 
instability-high and microsatellite-stable CRC. 
Ongoing clinical trials (NCT04208958) are further 
exploring these effects.236 In vitro studies have 
shown that Lactobacillus species and their metabo-
lites could sensitize drug-resistant CRC cells to 
chemotherapy.237,238 Dietary fiber and its metabo-
lites, such as butyrate, have been shown to increase 
the effectiveness of anti-PD-1 therapy in CRC allo-
graft models.239 Furthermore, genetically engi-
neered probiotics and selective bacteriophages 
targeting of Fusobacterium nucleatum have poten-
tial in enhancing ICI activity and improving 
chemotherapy outcomes in animal models of 
CRC.239–241 Recent studies have also explored the 
role of SCFAs in modulating the tumor microen-
vironment. For instance, butyrate has been shown 
to inhibit the proliferation of CRC cells by inducing 
cell cycle arrest and apoptosis.242 Additionally, pro-
pionate has been found to induce apoptosis in 

colon cancer by downregulation of protein argi-
nine methyltransferase 1, a key enzyme in epige-
netic modification.243

10. Conclusion and future perspectives

Individual variations in gut microbiota composi-
tion are influenced by factors such as diet, age, and 
health status, though the overall complexity of the 
human gut microbiota remains relatively stable. 
Specific microbiome changes have been increas-
ingly linked to colorectal cancer (CRC). It is sug-
gested that CRC may result from intensified 
interactions between pathogenic microbiota and 
a disrupted host response at genomic and epige-
nomic levels. Despite significant progress in gut 
microbiota research, there are still challenges to 
address. Current metagenomic annotations of 
microbial taxa typically reach only the genus or 
species level, which is insufficient for identifying 
specific strains involved in CRC pathogenesis and 
their mechanisms. Metabolomics associated with 
various gut microbial organisms has been shown 
to have an interplay with the host, including 
a considerable influence over cancer development 
and prevention. Further research is needed to iden-
tify microbial strains using multi-omic approaches 
and data mining algorithms. Additionally, most 
CRC studies are cross-sectional, limiting insights 
into the dynamic changes in gut microbiota and 
their causal relationship with CRC. Thus, integrat-
ing multi-omics data across different populations 
for longitudinal microbial profiling is essential to 
better understand the role of gut microbiome in 
development of CRC. The future of microbiota- 
derived short-chain fatty acids (SCFAs) in CRC 
looks promising, with several key areas of potential 
impact. SCFAs such as butyrate, propionate, and 
acetate have demonstrated protective effects 
against CRC by supporting healthy gut microbiota, 
enhancing mucosal barrier function, and regulat-
ing inflammation. More research needed on SCFAs 
utilization for dietary or supplemental interven-
tions to prevent CRC. Additionally, SCFAs could 
serve as adjunctive treatments in CRC, potentially 
affecting tumor growth, immune responses, as well 
as efficacy of existing therapies. Personalized 
approaches based on individual microbiome 
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profiles and SCFA metabolism may refine CRC 
prevention and treatment strategies. Further inves-
tigation is required to understand how SCFAs 
influence CRC development and progression, 
including their effects on epigenetics and cellular 
pathways. Combining SCFAs with other therapies, 
like immunotherapy or targeted treatments, could 
improve overall efficacy and address resistance. 
Strategies to increase SCFA production through 
probiotics, prebiotics, or dietary changes might 
enhance anti-cancer effects and patient outcomes. 
Clinical trials are needed to determine the safety, 
efficacy, and optimal use of SCFA-based therapies 
in CRC. Overall, the field of microbiota-derived 
SCFAs in CRC holds significant promise for 
advancing preventive and therapeutic strategies.
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Abbreviations

SCFAs short chain fatty acids
DNA deoxyribonucleic acid
ncRNA non-coding RNA
CRC colorectal cancer
IBD inflammatory bowel disease
FMT fecal microbiota transplantation
NF-κβ nuclear factor kappa B
PPARγ peroxisome proliferator-activated recep-

tor gamma
Lgr5+ leucine-rich repeat-containing G protein- 

coupled receptor 5
PPAR-δ peroxisome proliferator-activated recep-

tor delta
HDAC histone deacetylase
NADH/NAD+ nicotinamide adenine dinucleotide
ATP adenosine triphosphate
LHR luteinizing hormone receptor
XIAP X-linked inhibitor of apoptosis protein
IDO1 indoleamine 2,3‐dioxygenase 1
FOXP3 forkhead box protein P3
IEC intestinal epithelial cells
ROS reactive oxygen species
5FU fluorouracil
NaB sodium butyrate
SLC5A8 solute carrier family 5 member 8
GPCRs G protein-coupled receptors
GPR109a G protein-coupled receptor 109a
GPR43 G protein-coupled receptor 43
GPR41 G protein-coupled receptor 41
Gαi and Gαq G protein subunit type
CSE1L chromosome segregation 1-like
HFD high-fat diet
CRP C-reactive protein
TNF-α tumor necrosis factor alpha
IL-6 Interleukin-6
PD-1 programmed cell death protein 1
MYC myelocytomatosis
RET proto-oncogene
MET mesenchymal epithelial transition
EGFR epidermal growth factor receptor
TGFRB2 transforming growth factor receptor-β2
PTEN phosphatase
CHEK2 checkpoint kinase 2
CDKN2A cyclin-dependent kinase inhibitor 2A
EGF epidermal growth factor
TGFα transforming growth factor alpha
MAPK mitogen-activated protein kinases
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PI3K phosphoinositide 3-kinases
Akt protein kinase B
mTOR mammalian target of rapamycin
NFATc nuclear factor of activated T cells
HIF-1 hypoxia-inducible factor 1
PMA phorbol 12-myristate 13-acetate
TSA trichostatin A
LPS lipopolysaccharide
NKG2D natural killer group 2D receptor
TLRs Toll-like receptors
DSS dextran sulfate sodium
NETs neutrophil extracellular traps
COX cyclooxygenase
iNOS or NOS II inducible nitric oxide synthase
APC adenomatous polyposis coli
IgE immunoglobulin E
AhR aryl hydrocarbon receptor
ARNT aryl hydrocarbon receptor nuclear 

translocator
HAT histone acetyltransferase
K/HDAC lysine/histone deacetylase
PLC phospholipase C
TF transcription factor
XRE xenobiotic response element
SAM S-adenosylmethionine
DNMTs DNA methyltransferases
TET ten-eleven translocation
lncRNA long-noncoding RNAs
miRNAs micro-RNAs
HMTs histone methyltransferases
HDMs demethylases
E2F transcription factor 1
UHRF1 ubiquitin like with PHD and ring finger 

domains 1
HIST2H3A histone cluster 2 h3 family member A
HIST1H4K histone H4 in humans
HIST1H4L histone H4 protein in humans
HIST1H3B the gene that encodes histone H3.1
HIST1H3D the gene that encodes the histone H3.1 

protein in humans
HIST1H3H histone cluster 1, H3h
FOXM1 forkhead box protein M
LHR luteinizing hormone receptor
XIAP X-linked inhibitor of apoptosis protein
IDO-1 indoleamine 2,3-dioxygenase 1
FGIDs functional gastrointestinal disorders
IBS irritable bowel syndrome
Th17 T helper
SFB segmented filamentous bacteria
RA retinoic acid
Bas Bile acids
GF germ-free
IBD Inflammatory Bowel Disease
MSI microsatellite instability
pMMR proficient mismatch repair
hMLH1 human mutL homolog 1
HPA hypothalamic-pituitary-adrenal

ANS autonomic nervous system
EECs Enteroendocrine cells
GIT gastrointestinal tract
5-HT 5-hydroxytryptamine
CCK cholecystokinin
GIP glucose-dependent insulinotropic  

polypeptide
GLP-1 glucagon-like peptide 1
PYY peptide YY
BBB blood-brain barrier
NTS nucleus tractus solitarius
SPF specific pathogen-free
ICI checkpoint inhibitor
α-KG α-ketoglutaric acid
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